A Tableau Algorithm for Handling Inconsistency in OWL

  • Xiaowang Zhang
  • Guohui Xiao
  • Zuoquan Lin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5554)


In Semantic Web, the knowledge sources usually contain inconsistency because they are constantly changing and from different view points. As is well known, as based on the description logic, OWL is lack of the ability of tolerating inconsistent or incomplete data. Recently, the research in handling inconsistency in OWL becomes more and more important. In this paper, we present a paraconsistent OWL called quasi-classical OWL to handle inconsistency with holding important inference rules such as modus tollens, modus ponens, and disjunctive syllogism. We propose a terminable, sound and complete tableau algorithm to implement paraconsistent reasoning in quasi-classical OWL. In comparison with other approaches to handle inconsistency in OWL, our approach enhances the ability of reasoning by integrating paraconsistent reasoning with important classical inference rules.


Inference Rule Description Logic Modus Ponens Paraconsistent Logic Modus Tollens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bell, D.A., Qi, G., Liu, W.: Approaches to inconsistency handling in description-logic based ontologies. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 1303–1311. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Besnard, P., del Cerro, L.F., Gabbay, D.M., Hunter, A.: Logical handling of inconsistent and default information. In: Uncertainty Management in Information Systems, pp. 325–342 (1996)Google Scholar
  3. 3.
    Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies. In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, IJCAI 2005, Edinburgh, Scotland, UK, July 30-August 5, 2005, pp. 454–459. Professional Book Center (2005)Google Scholar
  4. 4.
    Patel-Schneider, P.F., Hayes, P., Horrocks, I.: Owl web ontology language semantics and abstract syntax section 5. rdf-compatible model-theoretic semantics. Technical report, W3C (December 2004)Google Scholar
  5. 5.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, IJCAI 2003, Acapulco, Mexico, pp. 355–362. Morgan Kaufmann, San Francisco (2003)Google Scholar
  6. 6.
    Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for handling inconsistency in changing ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–367. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Straccia, U.: A sequent calculus for reasoning in four-valued description logics. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 343–357. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Ma, Y., Hitzler, P., Lin, Z.: Algorithms for paraconsistent reasoning with owl. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 399–413. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Ma, Y., Hitzler, P., Lin, Z.: Paraconsistent resolution for four-valued description logics. In: Proceedings of the 2007 International Workshop on Description Logics (DL 2007), Brixen-Bressanone, near Bozen-Bolzano, Italy, June 8-10, 2007, vol. 250. (2007)Google Scholar
  10. 10.
    Ma, Y., Hitzler, P., Lin, Z.: Paraconsistent reasoning for expressive and tractable description logics. In: Proceedings of the 21st International Workshop on Description Logics (DL 2008), Dresden, Germany, May 13-16, 2008, (2008)Google Scholar
  11. 11.
    Qi, G., Pan, J.Z., Ji, Q.: Extending description logics with uncertainty reasoning in possibilistic logic. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS, vol. 4724, pp. 828–839. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Belnap, N.D.: A useful four-valued logic. Modern uses of multiple-valued logics, 7–73 (1977)Google Scholar
  13. 13.
    Ma, Y., Qi, G., Hitzler, P., Lin, Z.: Measuring inconsistency for description logics based on paraconsistent semantics. In: Proceedings of the 2007 International Workshop on Description Logics (DL 2007), Brixen-Bressanone, near Bozen-Bolzano, Italy, June 8-10, 2007. CEUR Workshop Proceedings, vol. 250, (2007)Google Scholar
  14. 14.
    Zhang, X., Lin, Z.: Paraconsistent reasoning with quasi-classical semantic in alc. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 222–229. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Besnard, P., Hunter, A.: Quasi-classical logic: Non-trivializable classical reasoning from incosistent information. In: Froidevaux, C., Kohlas, J. (eds.) ECSQARU 1995. LNCS, vol. 946, pp. 44–51. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  16. 16.
    Hunter, A.: Reasoning with contradictory information using quasi-classical logic. J. Log. Comput. 10(5), 677–703 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  18. 18.
    Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description logic shiq. CoRR cs.LO/0005017 (2000)Google Scholar
  19. 19.
    Horrocks, I., Sattler, U.: A tableaux decision procedure for shoiq. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 448–453. Professional Book Center (2005)Google Scholar
  20. 20.
    Patel-Schneider, P.F.: A four-valued semantics for terminological logics. Artificial Intelligence 38, 319–351 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Xiaowang Zhang
    • 1
    • 2
  • Guohui Xiao
    • 1
  • Zuoquan Lin
    • 1
  1. 1.School of Mathematical SciencesPeking UniversityBeijingChina
  2. 2.School of Mathematical SciencesAnhui UniversityHefeiChina

Personalised recommendations