Advertisement

Semantic Matching Using the UMLS

  • Jetendr Shamdasani
  • Tamás Hauer
  • Peter Bloodsworth
  • Andrew Branson
  • Mohammed Odeh
  • Richard McClatchey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5554)

Abstract

Traditional ontology alignment techniques enable equivalence relationships to be established between concepts in two ontologies with some confidence value. With semantic matching, however, it is possible to identify not only equivalence (≡) relationships between concepts, but less general (\(\sqsubseteq\)) and more general relationships (\(\sqsupseteq\)). This is beneficial since more expressive relationships can be discovered between ontologies thus helping us to resolve heterogeneity between differing semantic representations at a finer level of granularity. This work concerns the application of semantic matching to the medical domain. We have extended the SMatch algorithm to function in the medical domain with the use of the UMLS metathesaurus as the background resource, hence removing its previous reliance on WordNet, which does not cover the medical domain in a satisfactory manner. We describe the steps required to extend the SMatch algorithm to the medical domain for use with UMLS. We test the accuracy of our approach on subsets of the FMA and MeSH ontologies, with both precision and recall showing the accuracy and coverage of different versions of our algorithm on each dataset.

Keywords

Atomic Formula Logical Formula Medical Domain Concept Hierarchy Reference Alignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  2. 2.
    Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic Matching: Algorithms and Implementation. Journal of Data Semantics, 1–38 (2007)Google Scholar
  3. 3.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  4. 4.
    Shamdasani, J., Bloodsworth, P., McClatchey, R.: Semantic Matching for the Medical Domain. In: Gray, A., Jeffery, K., Shao, J. (eds.) BNCOD 2008. LNCS, vol. 5071, pp. 198–202. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bodenreider, O.: The Unified Medical Language System (UMLS): Integrating Biomedical Terminology. Nucleic Acids Research 32 (2004)Google Scholar
  6. 6.
    Tan, H., Jakoniene, V., Lambrix, P., Aberg, J., Shahmehri, N.: Alignment of Biomedical Ontologies Using Life Science Literature. In: Bremer, E.G., Hakenberg, J., Han, E.-H.(S.), Berrar, D., Dubitzky, W. (eds.) KDLL 2006. LNCS (LNBI), vol. 3886, pp. 1–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Do, H., Rahm, E.: COMA a system for flexible combination of schema matching approaches. In: 28th International Conference of Very Large Databases (2002)Google Scholar
  8. 8.
    Risto, G., Aleksovski, Z., ten Kate, W., van Harmelen, F.: Using Google Distance to Weight Approximate Ontology Matches. In: BNACI 2007 (2007)Google Scholar
  9. 9.
    Aleksovski, Z., Klein, M., ten Kate, W., van Harmelen, F.: Matching Unstructured Vocabularies using a Background Ontology. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS, vol. 4248, pp. 182–197. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Aleksovski, Z., ten Kate, W., van Harmelen, F.: Exploiting the structure of background knowledge used in ontology matching. In: Ontology Matching Workshop (ISWC 2006) (2006)Google Scholar
  11. 11.
    Sabou, M., d’Aquin, M., Motta, E.: Exploring the Semantic Web as Background Knowledge for Ontology Matching. International Journal of Data Semantics (2008)Google Scholar
  12. 12.
    Garcia, J., Lopez, V., d’Aquin, M., Sabou, M., Motta, E., Mena, E.: Solving Semantic Ambiguity to Improve Semantic Web based Ontology Matching. In: International Workshop on Ontology Matching (OM 2007) (2007)Google Scholar
  13. 13.
    Caracciolo, C., Euzenat, J., Hollink, L., Ichise, R., Isaac, A., Malais, V., Meilicke, C., Pane, J., Shvaiko, P., Stuckenschmidt, H., Svab-Zamazal, O., Svatek, V.: Results of the Ontology Alignment Evaluation Initiative 2008. In: Ontology Matching Workshop (ISWC 2008) (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jetendr Shamdasani
    • 1
  • Tamás Hauer
    • 1
  • Peter Bloodsworth
    • 1
  • Andrew Branson
    • 1
  • Mohammed Odeh
    • 1
  • Richard McClatchey
    • 1
  1. 1.CCCS Research Centre, CEMS FacultyUniversity of the West of England, Coldharbour Lane, FrenchayBristolUK

Personalised recommendations