Complexity and Occlusion Management for the World-in-Miniature Metaphor

  • Ramón Trueba
  • Carlos Andujar
  • Ferran Argelaguet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5531)

Abstract

The World in Miniature (WIM) metaphor allows users to interact and travel efficiently in virtual environments. In addition to the first-person perspective offered by typical VR applications, the WIM offers a second dynamic viewpoint through a hand-held miniature copy of the environment. In the original WIM paper the miniature was a scaled down replica of the whole scene, thus limiting its application to simple models being manipulated at a single level of scale. Several WIM extensions have been proposed where the replica shows only a part of the environment. In this paper we present a new approach to handle complexity and occlusion in the WIM. We discuss algorithms for selecting the region of the scene which will be covered by the miniature copy and for handling occlusion from an exocentric viewpoint. We also present the results of a user-study showing that our technique can greatly improve user performance on spatial tasks in densely-occluded scenes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stoakley, R., Conway, M.J., Pausch, Y.: Virtual reality on a wim: interactive worlds in miniature. In: SIGCHI 1995: SIG on Human factors in computing systems, pp. 265–272 (1995)Google Scholar
  2. 2.
    Chittaro, L., Gatla, V.K., Venkataraman, S.: The interactive 3d breakaway map: A navigation and examination aid for multi-floor 3d worlds. In: CW 2005: Proceedings of the 2005 International Conference on Cyberworlds, pp. 59–66. IEEE Computer Society, Washington (2005)Google Scholar
  3. 3.
    LaViola Jr., J.J., Feliz, D.A., Keefe, D.F., Zeleznik, R.C.: Hands-free multi-scale navigation in virtual environments. In: Proceedings of the Symposium on Interactive 3D Graphics 2001, pp. 9–15 (2001)Google Scholar
  4. 4.
    Wingrave, C.A., Haciahmetoglu, Y., Bowman, D.A.: Overcoming world in miniature limitations by a scaled and scrolling wim. 3D User Interfaces, 11–16 (2006)Google Scholar
  5. 5.
    Diepstraten, J., Weiskopf, D., Ertl, T.: Interactive cutaway illustrations. In: Proceedings of Eurographics 2003, pp. 523–532 (2003)Google Scholar
  6. 6.
    Cohen-Or, D., Chrysanthou, Y., Silva, C., Durand, F.: A survey of visibility for walkthrough applications. IEEE Transactions on Visualization and Computer Graphics 9(3), 412–431 (2003)CrossRefGoogle Scholar
  7. 7.
    Teller, S.J., Séquin, C.H.: Visibility preprocessing for interactive walkthroughs. SIGGRAPH Computer Graphics 25(4), 61–70 (1991)CrossRefGoogle Scholar
  8. 8.
    Hong, L., Muraki, S., Kaufman, A., Bartz, D., He, T.: Virtual voyage: interactive navigation in the human colon. In: SIGGRAPH 1997: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 27–34 (1997)Google Scholar
  9. 9.
    Haumont, D., Debeir, O., Sillion, F.: Volumetric cell-and-portal generation. Computer Graphics Forum, 3–22 (2003)Google Scholar
  10. 10.
    Andújar, C., Vázquez, P., Fairén, M.: Way-finder: Guided tours through complex walkthrough models. Computer Graphics Forum 23(3), 499–508 (2004)CrossRefGoogle Scholar
  11. 11.
    Elmqvist, N., Tsigas, P.: A taxonomy of 3d occlusion management for visualization. IEEE Transactions on Visualization and Computer Graphics 14(5), 1095–1109 (2008)CrossRefGoogle Scholar
  12. 12.
    Elmqvist, N., Assarsson, U., Tsigas, P.: Employing dynamic transparency for 3d occlusion management: Design issues and evaluation. In: Baranauskas, C., Palanque, P., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4662, pp. 532–545. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Coffin, C., Hollerer, T.: Interactive perspective cut-away views for general 3d scenes. In: 3DUI 2006: IEEE Symposium on 3D User Interfaces, pp. 25–28 (2006)Google Scholar
  14. 14.
    Burns, M., Finkelstein, A.: Adaptive cutaways for comprehensible rendering of polygonal scenes. ACM Transactions on Graphics 27(5), 1–7 (2008)CrossRefGoogle Scholar
  15. 15.
    Kirsch, F., Döllner, J.: Opencsg: a library for image-based csg rendering. In: Proceedings USENIX 2005, p. 49 (2005)Google Scholar
  16. 16.
    Dong, Z., Chen, W., Bao, H., Zhang, H., Peng, Q.: Real-time voxelization for complex polygonal models. In: PG 2004: Proceedings of the 12th Pacific Conference on Computer Graphics and Applications, pp. 43–50 (2004)Google Scholar
  17. 17.
    Jones, M., Satherley, R.: Using distance fields for object representation and rendering. In: Proceedings of Eurographics 2001, pp. 37–44 (2001)Google Scholar
  18. 18.
    Andújar, C., Ayala, D., Brunet, P.: Topology simplification through discrete models. ACM Transactions on Graphics 20(6), 88–105 (2002)CrossRefGoogle Scholar
  19. 19.
    Hable, J., Rossignac, J.: Blister: Gpu-based rendering of boolean combinations of free-form triangulated shapes. ACM Trans. Graph. 24(3), 1024–1031 (2005)CrossRefGoogle Scholar
  20. 20.
    Shade, J., Gortler, S., He, L.W., Szeliski, R.: Layered depth images. In: SIGGRAPH 1998, pp. 231–242 (1998)Google Scholar
  21. 21.
    Everitt, C.: Introduction to interactive order-independent transparency. White Paper, NVIDIA Corporation (May 2001)Google Scholar
  22. 22.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ramón Trueba
    • 1
  • Carlos Andujar
    • 1
  • Ferran Argelaguet
    • 1
  1. 1.MOVING GroupUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations