Skip to main content

The First Commercial Brain–Computer Interface Environment

  • Chapter
  • First Online:
Brain-Computer Interfaces

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

The first commercial brain–computer interface environment has been developed so research centers could easily and quickly run BCI experiments to test algorithms and different strategies. A first BCI system was available on the market in 1999, and was continuously improved to the system available today, which is now used in more than 60 countries worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Pfurtscheller, C. Neuper, D. Flotzinger, and M. Pregenzer, EEG-based discrimination between imagination of right and left hand movement. Electroenceph clin Neurophysiol, 103, 642–651, (1997).

    Article  CAS  PubMed  Google Scholar 

  2. C. Guger, H. Ramoser, and G. Pfurtscheller, Real-time EEG analysis with subject-specific spatial patterns for a brain computer interface (BCI). IEEE Trans Neural Syst Rehabil Eng, 8, 447–456, (2000).

    CAS  Google Scholar 

  3. E.C. Leuthardt, G. Schalk, J.R. Wolpaw, J.G. Ojemann, and D.W. Moran, A brain-computer interface using electrocorticographic signals in humans. J Neural Eng, 1, 63–71, (2004).

    Article  PubMed  Google Scholar 

  4. C. Guger, A. Schlögl, C. Neuper, D. Walterspacher, T. Strein, and G. Pfurtscheller, Rapid prototyping of an EEG-based brain-computer interface (BCI). IEEE Trans Rehab Engng, 9(1), 49–58, (2001).

    Article  CAS  Google Scholar 

  5. G.R. Muller-Putz, R. Scherer, C. Brauneis, and G. Pfurtscheller, Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J Neural Eng, 2(4), 123–130, (2005).

    Article  PubMed  Google Scholar 

  6. N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kubler, J. Perelmouter, E. Taub, and H. Flor, A spelling device for the paralysed. Nature, 398(6725), 297–298, (1999).

    Article  CAS  PubMed  Google Scholar 

  7. M. Thulasidas, G. Cuntai, and W. Jiankang, Robust classification of EEG signal for brain-computer interface. IEEE Trans Neural Syst Rehabil Eng, 14(1), 24–29, 2006.

    Article  PubMed  Google Scholar 

  8. G. Pfurtscheller, C. Neuper, C. Guger, B. Obermaier, M. Pregenzer, H. Ramoser, and A. Schlögl, Current trends in Graz brain-computer interface (BCI) research. IEEE Trans Rehab Engng, 8, 216–219, (2000).

    Article  CAS  Google Scholar 

  9. C. Guger, Real-time data processing under Windows for an EEG-based brain-computer interface. Dissertation, University of Technology Graz, Austria, (1999).

    Google Scholar 

  10. N. Birbaumer, A. Kubler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, I. Iversen, B. Kotchoubey, N. Neumann, and H. Flor, The thought translation device (TTD) for completely paralyzed patients. IEEE Trans Rehabil Eng, 8(2), 190–193, 2000.

    Article  CAS  PubMed  Google Scholar 

  11. D.J. Krusienski, E.W. Sellers, F. Cabestaing, S. Bayoudh, D.J. McFarland, T.M. Vaughan, and J.R. Wolpaw, A comparison of classification techniques for the P300 Speller. J Neural Eng, 3(4), 299–305, (2006).

    Article  PubMed  Google Scholar 

  12. C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, and G. Pfurtscheller, How many people are able to operate an EEG-based brain computer interface? IEEE Trans Rehab Engng, 11, 145–147, (2003).

    Article  CAS  Google Scholar 

  13. H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Neural Syst Rehabil Eng, 8(4), 441–446, (2000).

    CAS  Google Scholar 

  14. D.J. McFarland, W.A. Sarnacki, and J.R. Wolpaw, Brain-computer interface (BCI) operation: optimizing information transfer rates. Biol Psychol, 63(3), 237–251, (2003).

    Article  PubMed  Google Scholar 

  15. G. Edlinger, and C. Guger: Laboratory PC and mobile pocket PC brain-computer interface architectures. Conf Proc IEEE Eng Med Biol Soc, 5, 5347–5350, (2005).

    Google Scholar 

  16. E.W. Sellers, D.J. Krusienski, D.J. McFarland, T.M. Vaughan, and J.R. Wolpaw, A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol Psychol, 73(3), 242–252, (2006).

    Article  PubMed  Google Scholar 

  17. G. Klem, H. Lüders, H. Jasper, and C. Elger, The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Cleveland Clinic Foundation, 52, 3–6, (1999).

    CAS  Google Scholar 

  18. B. Obermaier, C. Guger, C. Neuper, and G. Pfurtscheller, Hidden Markov Models for online classification of single trial EEG data. Pattern Recogn Lett, 22, 1299–1309, (2001).

    Article  Google Scholar 

  19. C.Neuper, G. Pfurtscheller, C. Guger, B. Obermaier, M. Pregenzer, H. Ramoser, and A. Schlögl, Current trends in Graz brain-computer interface (BCI) research. IEEE Trans Rehab Engng, 8, 216–219, (2000).

    Article  Google Scholar 

  20. C. Guan, M. Thulasida, and W. Jiankang, High performance P300 speller for brain-computer interface. IEEE Int Workshop Biomed. Circuits Syst, S3, 13–16, (2004).

    Google Scholar 

  21. M. Waldhauser, Offline and online processing of evoked potentials. Master thesis, FH Linz, (2006).

    Google Scholar 

  22. E.W. Sellers and E. Donchin, A P300-based brain-computer interface: initial tests by ALS patients. Clin Neurophysiol, . 117(3), 538–548, (2006).

    Article  PubMed  Google Scholar 

  23. C. Guger, C. Groenegress, C. Holzner, G. Edlinger, and M. Slater, Brain-computer interface for controlling virtual environments. 2nd international conference on applied human factors and ergonomics. . Las Vegas, NV, USA, (2008).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the EC projects Presenccia, SM4all, Brainable, Decoder, Better and Vere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Guger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guger, C., Edlinger, G. (2009). The First Commercial Brain–Computer Interface Environment. In: Graimann, B., Pfurtscheller, G., Allison, B. (eds) Brain-Computer Interfaces. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02091-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02091-9_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02090-2

  • Online ISBN: 978-3-642-02091-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics