Skip to main content

Detection and Localization Sensor Assignment with Exact and Fuzzy Locations

  • Conference paper
Distributed Computing in Sensor Systems (DCOSS 2009)

Abstract

Sensor networks introduce new resource allocation problems in which sensors need to be assigned to the tasks they best help. Such problems have been previously studied in simplified models in which utility from multiple sensors is assumed to combine additively. In this paper we study more complex utility models, focusing on two particular applications: event detection and target localization. We develop distributed algorithms to assign directional sensors of different types to multiple simultaneous tasks using exact location information. We extend our algorithms by introducing the concept of fuzzy location which may be desirable to reduce computational overhead and/or to preserve location privacy. We show that our schemes perform well using both exact or fuzzy location information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmed, N., Kanhere, S.S., Jha, S.: Probabilistic coverage in wireless sensor networks. In: LCN 2005, Washington, DC, USA (2005)

    Google Scholar 

  2. Ai, J., Abouzeid, A.: Coverage by directional sensors in randomly deployed wireless sensor networks. Journal of Combinatorial Optimization 11(1), 21–41 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bar-Noy, A., Brown, T., Johnson, M.P., La Porta, T., Liu, O., Rowaihy, H.: Assigning sensors to missions with demands. In: Kutyłowski, M., Cichoń, J., Kubiak, P. (eds.) ALGOSENSORS 2007. LNCS, vol. 4837, Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems (1999)

    Google Scholar 

  5. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wireless Networks 7(6), 609–616 (2001)

    Article  MATH  Google Scholar 

  6. Cai, Y., Lou, W., Li, M., Li, X.: Target-Oriented scheduling in directional sensor networks. In: INFOCOM 2007 (2007)

    Google Scholar 

  7. Fotakis, D., Spirakis, P.G.: Minimum congestion redundant assignments to tolerate random faults. Algorithmica 32(3), 396–422 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frank, C., Omer, K.: Algorithms for generic role assignment in wireless sensor networks. In: SenSys 2005 (2005)

    Google Scholar 

  9. Gerkey, B.P., Mataric, M.J.: A formal analysis and taxonomy of task allocation in Multi-Robot systems. The International Journal of Robotics Research 23(9), 939 (2004)

    Article  Google Scholar 

  10. Hefeeda, M., Ahmadi, H.: A probabilistic coverage protocol for wireless sensor networks. In: ICNP 2007, pp. 41–50 (2007)

    Google Scholar 

  11. Johnson, M.P., Rowaihy, H., Pizzocaro, D., Bar-Noy, A., Chalmers, S., La Porta, T., Preece, A.: Frugal sensor assignment. In: Nikoletseas, S.E., Chlebus, B.S., Johnson, D.B., Krishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp. 219–236. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Kadar, I.: Optimum geometry selection for sensor fusion. In: SPIE 1998 (1998)

    Google Scholar 

  13. Kaplan, L.: Local node selection for localization in a distributed sensor network. IEEE Transactions on Aerospace and Electronic Systems 42(1), 136–146 (2006)

    Article  Google Scholar 

  14. Kaplan, L.M., Le, Q.: On exploiting propagation delays for passive target localization using bearings-only measurements. J. of the Franklin Institute 342(2), 193–211 (2005)

    Article  MATH  Google Scholar 

  15. Karp, B., Kung, H.: Greedy perimeter stateless routing for wireless networks. In: MOBICOM 2000 (2000)

    Google Scholar 

  16. Kelly, A.: Precision dilution in triangulation-based mobile robot position estimation. In: Proceedings of Intelligent Autonomous Systems, Amsterdam (2003)

    Google Scholar 

  17. Lam, C.-C., Sadayappan, P., Wenger, R.: Optimal reordering and mapping of a class of nested-loops for parallel execution. In: Sehr, D., Banerjee, U., Gelernter, D., Nicolau, A., Padua, D.A. (eds.) LCPC 1996. LNCS, vol. 1239. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  18. Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. In: EC 2001 (2001)

    Google Scholar 

  19. Low, K.H., Leow, W.K., Ang Jr., M.H.: Autonomic mobile sensor network with self-coordinated task allocation and execution. IEEE Trans. on Systems, Man and Cybernetics (C) 36(3), 315–327 (2006)

    Article  Google Scholar 

  20. Mehta, K., Liu, D., Wright, M.: Location privacy in sensor networks against a global eavesdropper. In: ICNP 2007 (2007)

    Google Scholar 

  21. Preece, A., Gomez, M., de Mel, G., Vasconcelos, W., Sleeman, D., Colley, S., Pearson, G., Pham, T., La Porta, T.: Matching sensors to missions using a knowledge-based approach. In: SPIE DSS 2008 (2008)

    Google Scholar 

  22. Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing without location information. In: MOBICOM 2003 (2003)

    Google Scholar 

  23. Roughan, M., Arnold, J.: Multiple target localisation in sensor networks with location privacy. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 116–128. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Tutton, S.J.: Optimizing the allocation of sensor assets for the unit of action. Technical report, Naval Postgraduate School, California (2006)

    Google Scholar 

  25. Wang, H., Yao, K., Pottie, G., Estrin, D.: Entropy-based sensor selection heuristic for target localization. In: IPSN 2004, Berkeley, California, USA (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rowaihy, H. et al. (2009). Detection and Localization Sensor Assignment with Exact and Fuzzy Locations. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds) Distributed Computing in Sensor Systems. DCOSS 2009. Lecture Notes in Computer Science, vol 5516. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02085-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02085-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02084-1

  • Online ISBN: 978-3-642-02085-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics