Skip to main content

Light Localization by Defects in Optically Induced Photonic Structures

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 150))

Abstract

In the past ten years, there has blossomed an interest in the study of collective behavior of wave propagation in periodic waveguide arrays and photonic lattices [1–3]. The unique bandgap structures of these periodic media, coupled with nonlinear effects, give rise to many types of novel soliton structures [1– 26]. On the other hand, it is well known that one of the unique and most interesting features of photonic band-gap structures is a fundamentally different way of waveguiding by defects in otherwise uniformly periodic structures. Such waveguiding has been demonstrated with an “air-hole” in photonic crystal fibers (PCF) for optical waves [27, 28], in an isolated defect in two-dimensional arrays of dielectric cylinders for microwaves [29–31], and recently in all-solid PCF with a lower-index core [32, 33]. In addition, laser emission based on photonic defect modes has been realized in a number of experiments [34–38]. In one-dimensional (1D) fabricated semiconductor waveguide arrays, previous experiments have investigated nonlinearity-induced escape from a defect state [39] and interactions of discrete solitons with structural defects [40] (see also [41]). Despite the above efforts, theoretical understanding on defect guiding was still limited, and experimental demonstrations of defect guiding was still scarce. In addition, when nonlinear effects are significant, how defect guiding is affected by nonlinearity is largely an open issue. Recently, in a series of theoretical and experimental studies, we optically induced 1D, 2D and ringlike photonic lattices with single-site negative defects in photorefractive crystals, and investigated their linear and nonlinear light guiding properties [42–48]. This work will be reviewed in this Chapter. In addition, we present the first experimental demonstration of nonlinear defect modes which undergoes nonlinear propagation through the defects. Our work not only has a direct link to technologically important systems of periodic structures such as PCF, but also brings about the possibility for studying, in an optical setting, many novel phenomena in periodic systems beyond optics such as edge dislocation, defect healing, eigenmode splitting, and nonlinear mode coupling which have been intriguing scientists for decades [49–51].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.N. Christodoulides, F. Lederer, and Y. Siberberg, Nature 424, 817 (2003)

    Article  ADS  Google Scholar 

  2. Y.S. Kivshar and G.P. Agrawal, Optical solitons, Academic Press, New York (2003)

    Google Scholar 

  3. D. Campbell, S. Flach, and Y.S. Kivshar, Phys. Today 57, 43 (2004)

    Article  ADS  Google Scholar 

  4. D.N. Christodoulides and R.I. Joseph, Opt. Lett. 13, 794 (1988)

    Article  ADS  Google Scholar 

  5. H.S. Eisenberg, Y. Silberberg, R. Morandotti, A.R. Boyd, and J.S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998)

    Article  ADS  Google Scholar 

  6. R. Morandotti, H.S. Eisenberg, Y. Silberberg, M. Sorel, and J.S. Aitchison, Phys. Rev. Lett. 86, 3296 (2001)

    Article  ADS  Google Scholar 

  7. N.K. Efremidis, S. Sears, D.N. Christodoulides, J.W. Fleischer, and M. Segev, Phys. Rev. E 66, 046602 (2002)

    Article  ADS  Google Scholar 

  8. J.W. Fleischer, T. Carmon, M. Segev, N.K. Efremidis, and D.N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003)

    Article  ADS  Google Scholar 

  9. J.W. Fleischer, M. Segev, N.K. Efremidis, and D.N. Christodoulides, Nature 422, 147 (2003)

    Article  ADS  Google Scholar 

  10. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, Opt. Lett. 28, 710 (2003)

    Article  ADS  Google Scholar 

  11. H. Martin, E.D. Eugenieva, Z. Chen, and D.N. Christodoulides, Phys. Rev. Lett. 92, 123902 (2004)

    Article  ADS  Google Scholar 

  12. Z. Chen, H. Martin, E.D. Eugenieva, J. Xu, and A. Bezryadina, Phys. Rev. Lett. 92, 143902 (2004)

    Article  ADS  Google Scholar 

  13. B.A. Malomed and P. G. Kevrekidis, Phys. Rev. E 64, 026601 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Yang and Z. H. Musslimani, Opt. Lett. 28, 2094 (2003)

    Article  ADS  Google Scholar 

  15. Z. Musslimani and J. Yang, J. Opt. Soc. Am. B 21, 973 (2004)

    Article  ADS  Google Scholar 

  16. J. Yang, New Journal of Physics 6, 47 (2004)

    Article  ADS  Google Scholar 

  17. D.N. Neshev, T.J. Alexander, E.A. Ostrovskaya, Y.S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, Phys. Rev. Lett. 92, 123903 (2004)

    Article  ADS  Google Scholar 

  18. J.W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D.N. Christodoulides, Phys. Rev. Lett. 92, 123904 (2004)

    Article  ADS  Google Scholar 

  19. R. Iwanow, R. Schiek, G.I. Stegeman, T. Pertsch, F. Lederer, Y. Min, W. Sohler, Phys. Rev. Lett. 93, 113902 (2004)

    Article  ADS  Google Scholar 

  20. T. Pertsch, U. Peshchl, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, and F. Lederer, Phys. Rev. Lett. 93, 053901 (2004)

    Article  ADS  Google Scholar 

  21. A. Fratalocchi, G. Assanto, K.A. Brzdakiewicz, and M.A. Karpierz, Opt. Lett. 29, 1530 (2004)

    Article  ADS  Google Scholar 

  22. Y.S. Kivshar, Opt. Lett. 18, 1147 (1993)

    Article  ADS  Google Scholar 

  23. D. Mandelik, R. Morandotti, J.S. Aitchison, and Y. Silberberg, Phys. Rev. Lett. 92, 093904 (2004)

    Article  ADS  Google Scholar 

  24. D. Neshev, A.A. Sukhorukov, B. Hanna, W. Krolikowski, and Y.S. Kivshar, Phys. Rev. Lett. 93, 083905 (2004)

    Article  ADS  Google Scholar 

  25. F. Chen, M. Stepic, C. Rter, D. Runde, D. Kip, V. Shandarov, O. Manela, and M. Segev, Opt. Express 13, 4314 (2005)

    Article  ADS  Google Scholar 

  26. C. Lou, X. Wang, J. Xu, Z. Chen, and J. Yang, Phys. Rev. Lett. 98, 213903 (2007)

    Article  ADS  Google Scholar 

  27. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, New Jersey (1995)

    MATH  Google Scholar 

  28. P. Russell, Science 299, 358 (2003)

    Article  ADS  Google Scholar 

  29. S.L. McCall, P.M. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, Phys. Rev. Lett. 67, 2017 (1991)

    Article  ADS  Google Scholar 

  30. E. Yablonovitch, T.J. Gmitter, R.D. Meade, A.M. Rappe, K.D. Brommer, and J.D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991)

    Article  ADS  Google Scholar 

  31. M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000)

    Article  ADS  Google Scholar 

  32. F. Luan, A.K. George, T.D. Hedley, G.J. Pearce, D.M. Bird, J.C. Knight, and P.St.J. Russell, Opt. Lett. 29, 2369 (2004)

    Article  ADS  Google Scholar 

  33. A. Argyros, T.A. Birks, S.G. Leon-Saval, C.B. Cordeiro, F. Luan, and P.St.J. Russell, Opt. Express 13, 309 (2005)

    Article  ADS  Google Scholar 

  34. J. Schmidtke, W. Stille, and H. Finkelmann, Phys. Rev. Lett. 90, 083902 (2003)

    Article  ADS  Google Scholar 

  35. J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, and E.P. Ippen, Nature 390, 143 (1997)

    Article  ADS  Google Scholar 

  36. S. Fan, P.R. Villeneuve, J.D. Joannopoulos, and H.A. Haus, Phys. Rev. Lett. 80, 960 (1998)

    Article  ADS  Google Scholar 

  37. X. Wu, A. Yamilov, X. Liu, S. Li, V.P. Dravid, R.P.H. Chang, and H. Cao, Appl. Phys. Lett. 85, 3657 (2004)

    Article  ADS  Google Scholar 

  38. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O'Brien, P.D. Dapkus, and I. Kim, Science 284, 1819 (1999)

    Article  Google Scholar 

  39. U. Peschel, R. Morandotti, J.S. Aitchison, H.S. Eisenberg, and Y. Silberberg, Appl. Phys. Lett. 75, 1348 (1999)

    Article  ADS  Google Scholar 

  40. R. Morandotti, H.S. Eisenberg, D. Mandelik, Y. Silberberg, D. Modotto, M. Sorel, C.R. Stanley, and J.S. Aitchison, Opt. Lett. 28, 834 (2003)

    Article  ADS  Google Scholar 

  41. A.A. Sukhorukov and Y.S. Kivshar, Phys. Rev. Lett. 87, 083901 (2001)

    Article  ADS  Google Scholar 

  42. F. Fedele, J. Yang, and Z. Chen, Opt. Lett. 30, 1506 (2005)

    Article  ADS  Google Scholar 

  43. F. Fedele, J. Yang, and Z. Chen, Stud. Appl. Math. 115, 279 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. X. Wang, Z. Chen and J. Yang, Opt. Lett. 31, 1887 (2006)

    Article  ADS  Google Scholar 

  45. I. Makasyuk, Z. Chen and J. Yang, Phys. Rev. Lett. 96, 223903 (2006)

    Article  ADS  Google Scholar 

  46. X. Wang, J. Yang, Z. Chen, D. Weinstein, and J. Yang, Opt. Express 14, 7362 (2006)

    Article  ADS  Google Scholar 

  47. J. Yang and Z. Chen, Phys. Rev. E 73, 026609 (2006)

    Article  ADS  Google Scholar 

  48. J. Wang, J. Yang, and Z. Chen, Phys. Rev. A 76, 013828 (2007)

    Article  ADS  Google Scholar 

  49. G. Bartal, O. Cohen, H. Buljan, J.W. Fleischer, O. Manela, and M. Segev, Phys. Rev. Lett. 94, 163902 (2005)

    Article  ADS  Google Scholar 

  50. B. Freedman, R. Lifshitz, J.W. Fleischer, and M. Segev, Nature 440, 1166 (2006)

    Article  ADS  Google Scholar 

  51. M.J. Ablowitz, B. Ilan, E. Schonbrun, and R. Piestun, Phys. Rev. E 74, 035601 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  52. M. Shih, Z. Chen, M. Mitchell, and M. Segev, J. Opt. Soc. Am. B 14, 3091 (1997)

    Article  ADS  Google Scholar 

  53. M. Mitchell, Z. Chen, M. Shih, and M. Segev, Phys. Rev. Lett. 77, 490 (1996)

    Article  ADS  Google Scholar 

  54. Z. Chen, M. Mitchell, M. Segev, T.H. Coskun, and D.N. Christodoulides, Science 280, 889 (1998)

    Article  ADS  Google Scholar 

  55. Z. Chen, M. Segev, and D.N. Christodoulides, J. Opt. A 5, S389 (2003)

    Article  ADS  Google Scholar 

  56. Z. Chen and K. McCarthy, Opt. Lett. 27, 2019 (2002)

    Article  ADS  Google Scholar 

  57. . Z. Chen, K. McCarthy, and H. Martin, Optics and Photonic News, December 2002

    Google Scholar 

  58. J. Petter, J. Schröder, D. Träger, and C. Denz, Opt. Lett. 23, 438 (2003)

    Article  ADS  Google Scholar 

  59. M. Petrovic, D. Träger, A. Strinic, M. Belic, J. Schröder, and C. Denz, Phys. Rev. E 68, 055601 (2003)

    Article  ADS  Google Scholar 

  60. D.N. Neshev, Y.S. Kivshar, H. Martin, and Z. Chen, Opt. Lett. 29, 486 (2004)

    Article  ADS  Google Scholar 

  61. H.F. Talbot, Philos. Mag. 9, 401 (1836)

    Google Scholar 

  62. R. Iwanow, D.A. May-Arrioja, D.N. Christodoulides, G.I. Stegeman, Y. Min, and W. Sohler, Phys. Rev. Lett. 95, 053902 (2005)

    Article  ADS  Google Scholar 

  63. Z. Chen and J. Yang, “Controlling light in reconfigurable photonic lattices”, chapter in H.A. Abdeldayem and D.O. Frazier (ed.), Nonlinear Optics and Applications, pp. 103–150, Research Signpost, Kerala, India (2007)

    Google Scholar 

  64. Z. Shi and J. Yang, Phys. Rev. E 75, 056602 (2007)

    Article  ADS  Google Scholar 

  65. X. Wang, Z. Chen, and P.G. Kevrekidis, Phys. Rev. Lett. 96, 083904 (2006)

    Article  ADS  Google Scholar 

  66. Y.V. Kartashov, V.A. Vysloukh, and L. Torner, Phys. Rev. Lett. 93, 093904 (2004)

    Article  ADS  Google Scholar 

  67. Z. Xu, Y.V. Kartashov, L. Torner, and V.A. Vysloukh, Opt. Lett. 30, 1180 (2005)

    Article  ADS  Google Scholar 

  68. Z. Chen, H. Martin, A. Bezryadina, D. Neshev, Y.S. Kivshar, and D.N. Christodoulides, J. Opt. Soc. Am. B 22, 1395 (2005)

    Article  ADS  Google Scholar 

  69. Z. Chen, H. Martin, E.D. Eugenieva, J. Xu, J. Yang, and D.N. Christodoulides, Opt. Express 13, 1816 (2005)

    Article  ADS  Google Scholar 

  70. N.M. Litchinitser, A.K. Abeeluck, C. Headley, and B.J. Eggleton, Opt. Lett. 27, 1592 (2002)

    Article  ADS  Google Scholar 

  71. J. Yang and T.I. Lakoba, Stud. Appl. Math. 118, 153 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianke Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, J., Wang, X., Wang, J., Chen, Z. (2010). Light Localization by Defects in Optically Induced Photonic Structures. In: Denz, C., Flach, S., Kivshar, Y. (eds) Nonlinearities in Periodic Structures and Metamaterials. Springer Series in Optical Sciences, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02066-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02066-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02065-0

  • Online ISBN: 978-3-642-02066-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics