Skip to main content

Contraception Targets in Mammalian Ovarian Development

  • Chapter
  • First Online:
Fertility Control

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 198))

Abstract

In the human ovary, early in pre-natal life, oocytes are surrounded by pre-granulosa follicular cells to form primordial follicles. These primordial oocytes remain dormant, often for decades, until recruited into the growing pool throughout a woman’s adult reproductive years. Activation of follicle growth and subsequent development of growing oocytes in pre-antral follicles are major biological checkpoints that determine an individual females reproductive potential. In the past decade, great strides have been made in the elucidation of the molecular and cellular mechanisms underpinning maintenance of the quiescent primordial follicle pool and initiation and development of follicle growth. Gaining an in-depth knowledge of the intracellular signalling systems that control oocyte preservation and follicle activation has significant implications for improving female reproductive productivity and alleviating infertility. It also has application in domestic animal husbandry, feral animal population control and contraception in women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaltonen J et al (1999) Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metab 84:2744–2750

    Article  PubMed  CAS  Google Scholar 

  • Adhikari D, Liu K (2009) Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev 30:438–464

    Article  PubMed  CAS  Google Scholar 

  • Adhikari D et al (2009) Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles. Mol Hum Reprod 15:765–770

    Article  PubMed  CAS  Google Scholar 

  • Adhikari D et al (2010) Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet 19:397–410

    Article  PubMed  CAS  Google Scholar 

  • Andersen CY, Byskov AG (2006) Estradiol and regulation of anti-mullerian hormone, Inhibin-A, and Inhibin-B secretion: analysis of small antral and preovulatory human follicles’ fluid. J Clin Endocrinol Metab 91:4064–4069

    Article  PubMed  CAS  Google Scholar 

  • Arraztoa JA et al (2005) Identification of genes expressed in primate primordial oocytes. Hum Reprod 20:476–483

    Article  PubMed  CAS  Google Scholar 

  • Artac RA et al (2009) Neutralization of vascular endothelial growth factor antiangiogenic isoforms is more effective than treatment with proangiogenic isoforms in stimulating vascular development and follicle progression in the perinatal rat ovary. Biol Reprod 81:978–988

    Article  PubMed  CAS  Google Scholar 

  • Behringer RR (1995) The mullerian inhibitor and mammalian sexual development. Philos Trans R Soc Lond B Biol Sci 350:285–288; discussion 289

    Google Scholar 

  • Brenkman AB, Burgering BM (2003) FoxO3a eggs on fertility and aging. Trends Mol Med 9:464–467

    Article  PubMed  CAS  Google Scholar 

  • Britt KL et al (2004) Estrogen actions on follicle formation and early follicle development. Biol Reprod 71:1712–1723

    Article  PubMed  CAS  Google Scholar 

  • Brown C et al (2009) Subfertility caused by altered follicular development and oocyte growth in female mice lacking PKBalpha/Akt1. Biol Reprod 82(2):246–256

    Article  PubMed  CAS  Google Scholar 

  • Carabatsos MJ et al (1998) Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice. Dev Biol 204:373–384

    Article  PubMed  CAS  Google Scholar 

  • Castrillon DH et al (2003) Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301:215–218

    Article  PubMed  CAS  Google Scholar 

  • Chen Y et al (2007) Estradiol, progesterone, and genistein inhibit oocyte nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo. Endocrinology 148:3580–3590

    Article  PubMed  CAS  Google Scholar 

  • Chen Y et al (2009) Estrogen can signal through multiple pathways to regulate oocyte cyst breakdown and primordial follicle assembly in the neonatal mouse ovary. J Endocrinol 202:407–417

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Rajkovic A (2006) Genetics of early mammalian folliculogenesis. Cell Mol Life Sci 63:579–590

    Article  PubMed  CAS  Google Scholar 

  • Craig J et al (2007) Gonadotropin and intra-ovarian signals regulating follicle development and atresia: the delicate balance between life and death. Front Biosci 12:3628–3639

    Article  PubMed  CAS  Google Scholar 

  • Da Silva-Buttkus P et al (2009) Inferring biological mechanisms from spatial analysis: prediction of a local inhibitor in the ovary. Proc Natl Acad Sci USA 106:456–461

    Article  PubMed  Google Scholar 

  • David L et al (2009) Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev 20:203–212

    Article  PubMed  CAS  Google Scholar 

  • de Vet A et al (2002) AntimĂĽllerian hormone serum levels: a putative marker for ovarian aging. Fertil Steril 77:357–362

    Article  PubMed  Google Scholar 

  • Di Pasquale E et al (2004) Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet 75:106–111

    Article  PubMed  Google Scholar 

  • Di Pasquale E et al (2006) Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. J Clin Endocrinol Metab 91:1976–1979

    Article  PubMed  CAS  Google Scholar 

  • Dickinson RE et al (2010) Involvement of the SLIT/ROBO pathway in follicle development in the fetal ovary. Reproduction 139(2):395–407

    Article  PubMed  CAS  Google Scholar 

  • Diclemente N et al (1994) Inhibitory effect of amh upon the expression of aromatase and lh receptors by cultured granulosa-cells of rat and porcine immature ovaries. Endocrine 2:553–558

    CAS  Google Scholar 

  • Dissen GA et al (2002) Neurotrophic control of ovarian development. Microsc Res Tech 59:509–515

    Article  PubMed  CAS  Google Scholar 

  • Dissen GA et al (2009) Role of neurotrophic factors in early ovarian development. Semin Reprod Med 27:24–31

    Article  PubMed  CAS  Google Scholar 

  • Dole G et al (2008) Glial derived neurotrophic factor promotes ovarian primordial follicle development and cell-cell interactions during folliculogenesis. Reproduction 135:671–682

    Article  PubMed  CAS  Google Scholar 

  • Dong J et al (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531–535

    Article  PubMed  CAS  Google Scholar 

  • Dono R et al (1998) Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J 17:4213–4225

    Article  PubMed  CAS  Google Scholar 

  • Dube JL et al (1998) The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol 12:1809–1817

    Article  PubMed  CAS  Google Scholar 

  • Duffin K et al (2009) The forkhead transcription factor FOXL2 is expressed in somatic cells of the human ovary prior to follicle formation. Mol Hum Reprod 15(12):771–777

    Article  PubMed  CAS  Google Scholar 

  • Dumesic DA et al (2009) Intrafollicular antimullerian hormone levels predict follicle responsiveness to follicle-stimulating hormone (FSH) in normoandrogenic ovulatory women undergoing gonadotropin releasing-hormone analog/recombinant human FSH therapy for in vitro fertilization and embryo transfer. Fertil Steril 92:217–221

    Article  PubMed  CAS  Google Scholar 

  • Durlinger ALL et al (1999) Control of primordial follicle recruitment by Anti-Mullerian hormone in the mouse ovary. Endocrinology 140:5789–5796

    Article  PubMed  CAS  Google Scholar 

  • Durlinger ALL et al (2001) Anti-Mullerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology 142:4891–4899

    Article  PubMed  CAS  Google Scholar 

  • Durlinger AL et al (2002) Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology 143:1076–1084

    Article  PubMed  CAS  Google Scholar 

  • Edson MA et al (2009) The Mammalian ovary from genesis to revelation. Endocr Rev 30:624–712

    Article  PubMed  CAS  Google Scholar 

  • Elvin JA et al (1999a) Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol 13:1035–1048

    Article  PubMed  CAS  Google Scholar 

  • Elvin JA et al (1999b) Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol 13:1018–1034

    Article  PubMed  CAS  Google Scholar 

  • Eppig JJ et al (2002) The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci USA 99:2890–2894

    Article  PubMed  CAS  Google Scholar 

  • Furtado MB et al (2008) BMP/SMAD1 signaling sets a threshold for the left/right pathway in lateral plate mesoderm and limits availability of SMAD4. Genes Dev 22:3037–3049

    Article  PubMed  CAS  Google Scholar 

  • Galloway SM et al (2000) Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet 25:279–283

    Article  PubMed  CAS  Google Scholar 

  • Garor R et al (2009) Effects of basic fibroblast growth factor on in vitro development of human ovarian primordial follicles. Fertil Steril 91:1967–1975

    Article  PubMed  CAS  Google Scholar 

  • Geissler EN et al (1981) Analysis of pleiotropism at the dominant white-spotting (W) locus of the house mouse: a description of ten new W alleles. Genetics 97:337–361

    PubMed  CAS  Google Scholar 

  • Gilchrist RB et al (2004) Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci 82–83:431–446

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist RB et al (2008) Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update 14:159–177

    Article  PubMed  CAS  Google Scholar 

  • Gui LM, Joyce IM (2005) RNA interference evidence that growth differentiation factor-9 mediates oocyte regulation of cumulus expansion in mice. Biol Reprod 72:195–199

    Article  PubMed  CAS  Google Scholar 

  • Hanrahan JP et al (2004) Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod 70:900–909

    Article  PubMed  CAS  Google Scholar 

  • Hansen KR et al (2008) A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod 23:699–708

    Article  PubMed  Google Scholar 

  • Hayashi M et al (1999) Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology 140:1236–1244

    Article  PubMed  CAS  Google Scholar 

  • Holt JE et al (2006) CXCR4/SDF1 interaction inhibits the primordial to primary follicle transition in the neonatal mouse ovary. Dev Biol 293(2):449–460

    Article  PubMed  CAS  Google Scholar 

  • Hosaka T et al (2004) Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci USA 101:2975–2980

    Article  PubMed  CAS  Google Scholar 

  • Hreinsson JG et al (2002) Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab 87:316–321

    Article  PubMed  CAS  Google Scholar 

  • Hutt KJ, Albertini DF (2006) Clinical applications and limitations of current ovarian stem cell research: a review. J Exp Clin Assist Reprod 3:6

    Article  PubMed  Google Scholar 

  • Hutt KJ, Albertini DF (2007) An oocentric view of folliculogenesis and embryogenesis. Reprod Biomed Online 14:758–764

    Article  PubMed  CAS  Google Scholar 

  • Hutt KJ et al (2006a) Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis. Mol Hum Reprod 12(2):61–69

    Article  PubMed  CAS  Google Scholar 

  • Hutt KJ et al (2006b) KIT/KIT ligand in mammalian oogenesis and folliculogenesis: roles in rabbit and murine ovarian follicle activation and oocyte growth. Biol Reprod 75:421–433

    Article  PubMed  CAS  Google Scholar 

  • Jagarlamudi K et al (2009) Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation. PLoS One 4:e6186

    Article  PubMed  CAS  Google Scholar 

  • Jin X et al (2005) Signal transduction of stem cell factor in promoting early follicle development. Mol Cell Endocrinol 229:3–10

    Article  PubMed  CAS  Google Scholar 

  • John GB et al (2007) Specificity of the requirement for Foxo3 in primordial follicle activation. Reproduction 133:855–863

    Article  PubMed  CAS  Google Scholar 

  • John GB et al (2008) Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol 321:197–204

    Article  PubMed  CAS  Google Scholar 

  • John GB et al (2009) Kit signaling via PI3K promotes ovarian follicle maturation but is dispensable for primordial follicle activation. Dev Biol 331:292–299

    Article  PubMed  CAS  Google Scholar 

  • Juengel JL et al (2002) Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol Reprod 67:1777–1789

    Article  PubMed  CAS  Google Scholar 

  • Juengel JL et al (2004) Physiology of GDF9 and BMP15 signalling molecules. Anim Reprod Sci 82–83:447–460

    Article  PubMed  CAS  Google Scholar 

  • Junger MA et al (2003) The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J Biol 2:20

    Article  PubMed  Google Scholar 

  • Kaufmann E, Knochel W (1996) Five years on the wings of fork head. Mech Dev 57:3–20

    Article  PubMed  CAS  Google Scholar 

  • Kevenaar ME et al (2007a) Anti-Mullerian hormone and anti-Mullerian hormone type II receptor polymorphisms are associated with follicular phase estradiol levels in normo-ovulatory women. Hum Reprod 22:1547–1554

    Article  PubMed  CAS  Google Scholar 

  • Kevenaar ME et al (2007b) A polymorphism in the AMH type II receptor gene is associated with age at menopause in interaction with parity. Hum Reprod 22:2382–2388

    Article  PubMed  CAS  Google Scholar 

  • Kezele P, Skinner MK (2003) Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology 144:3329–3337

    Article  PubMed  CAS  Google Scholar 

  • Kezele P et al (2002) Cell-cell interactions in primordial follicle assembly and development. Front Biosci 7:d1990–d1996

    Article  PubMed  CAS  Google Scholar 

  • Kezele P et al (2005a) Keratinocyte growth factor acts as a mesenchymal factor that promotes ovarian primordial to primary follicle transition. Biol Reprod 73:967–973

    Article  PubMed  CAS  Google Scholar 

  • Kezele PR et al (2005b) Alterations in the ovarian transcriptome during primordial follicle assembly and development. Biol Reprod 72:241–255

    Article  PubMed  CAS  Google Scholar 

  • Kim H et al (2009a) Effects of diethylstilbestrol on ovarian follicle development in neonatal mice. Reprod Toxicol 27:55–62

    Article  PubMed  CAS  Google Scholar 

  • Kim H et al (2009b) Effects of diethylstilbestrol on programmed oocyte death and induction of polyovular follicles in neonatal mouse ovaries. Biol Reprod 81:1002–1009

    Article  PubMed  CAS  Google Scholar 

  • Knight PG, Glister C (2006) TGF-beta superfamily members and ovarian follicle development. Reproduction 132:191–206

    Article  PubMed  CAS  Google Scholar 

  • Krysko DV et al (2008) Life and death of female gametes during oogenesis and folliculogenesis. Apoptosis 13:1065–1087

    Article  PubMed  Google Scholar 

  • Lee WS et al (2001) Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat. Biol Reprod 65:994–999

    Article  PubMed  CAS  Google Scholar 

  • Lee WS et al (2004) Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary. Mol Reprod Dev 69:159–163

    Article  PubMed  CAS  Google Scholar 

  • Lintern-Moore S et al (1974) Follicular development in the infant human ovary. J Reprod Fertil 39:53–64

    Article  PubMed  CAS  Google Scholar 

  • Liu K et al (2006) Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer. Dev Biol 299:1–11

    Article  PubMed  CAS  Google Scholar 

  • Liu L et al (2007a) Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development 134:199–209

    Article  PubMed  CAS  Google Scholar 

  • Liu L et al (2007b) Phosphorylation and inactivation of glycogen synthase kinase-3 by soluble kit ligand in mouse oocytes during early follicular development. J Mol Endocrinol 38:137–146

    Article  PubMed  CAS  Google Scholar 

  • Lyet L et al (1996) Anti-mullerian hormone in relation to the growth and differentiation of the gubernacular primordia in mice. J Reprod Fertil 108:281–288

    Article  PubMed  CAS  Google Scholar 

  • Macklon NS et al (2006) The science behind 25 years of ovarian stimulation for in vitro fertilization. Endocr Rev 27:170–207

    Article  PubMed  Google Scholar 

  • Maheshwari A, Fowler PA (2008) Primordial follicular assembly in humans – revisited. Zygote 16:285–296

    Article  PubMed  CAS  Google Scholar 

  • Margulis S et al (2008) Bone morphogenetic protein 15 expression in human ovaries from fetuses, girls, and women. Fertil Steril 92:1666–1673

    Article  PubMed  Google Scholar 

  • Matzuk MM et al (2002) Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296:2178–2180

    Article  PubMed  CAS  Google Scholar 

  • McFee RM et al (2009) Inhibition of vascular endothelial growth factor receptor signal transduction blocks follicle progression but does not necessarily disrupt vascular development in perinatal rat ovaries. Biol Reprod 81:966–977

    Article  PubMed  CAS  Google Scholar 

  • McGee EA, Hsueh AJ (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21:200–214

    Article  PubMed  CAS  Google Scholar 

  • McGrath SA et al (1995) Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol 9:131–136

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin EA, McIver SC (2009) Awakening the oocyte: controlling primordial follicle development. Reproduction 137:1–11

    Article  PubMed  CAS  Google Scholar 

  • McMahon HE et al (2008) Phosphorylation of bone morphogenetic protein-15 and growth and differentiation factor-9 plays a critical role in determining agonistic or antagonistic functions. Endocrinology 149:812–817

    Article  PubMed  CAS  Google Scholar 

  • McNatty KP et al (2001) Genetic mutations influencing ovulation rate in sheep. Reprod Fertil Dev 13:549–555

    Article  PubMed  CAS  Google Scholar 

  • McNatty KP et al (2005) Oocyte-expressed genes affecting ovulation rate. Mol Cell Endocrinol 234:57–66

    Article  PubMed  CAS  Google Scholar 

  • McNatty KP et al (2007) Control of ovarian follicular development to the gonadotrophin-dependent phase: a 2006 perspective. Soc Reprod Fertil Suppl 64:55–68

    PubMed  CAS  Google Scholar 

  • Mishina Y et al (1999) High specificity of Mullerian-inhibiting substance signaling in vivo. Endocrinology 140:2084–2088

    Article  PubMed  CAS  Google Scholar 

  • Morikawa Y et al (2009) BMP signaling regulates sympathetic nervous system development through Smad4-dependent and -independent pathways. Development 136:3575–3584

    Article  PubMed  CAS  Google Scholar 

  • Munsterberg A, Lovell-Badge R (1991) Expression of the mouse anti-mullerian hormone gene suggests a role in both male and female sexual differentiation. Development 113:613–624

    PubMed  CAS  Google Scholar 

  • Nelson SM et al (2007) Serum anti-Mullerian hormone and FSH: prediction of live birth and extremes of response in stimulated cycles–implications for individualization of therapy. Hum Reprod 22:2414–2421

    Article  PubMed  CAS  Google Scholar 

  • Nelson SM et al (2009) Anti-Mullerian hormone-based approach to controlled ovarian stimulation for assisted conception. Hum Reprod 24:867–875

    Article  PubMed  CAS  Google Scholar 

  • Nilsson EE, Skinner MK (2002) Growth and differentiation factor-9 stimulates progression of early primary but not primordial rat ovarian follicle development. Biol Reprod 67:1018–1024

    Article  PubMed  CAS  Google Scholar 

  • Nilsson EE, Skinner MK (2003) Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol Reprod 69:1265–1272

    Article  PubMed  CAS  Google Scholar 

  • Nilsson EE, Skinner MK (2009) Progesterone regulation of primordial follicle assembly in bovine fetal ovaries. Mol Cell Endocrinol 313(1–2):9–16

    Article  PubMed  CAS  Google Scholar 

  • Nilsson E et al (2001) Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol 175:123–130

    Article  PubMed  CAS  Google Scholar 

  • Nilsson EE et al (2002) Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol 188:65–73

    Article  PubMed  CAS  Google Scholar 

  • Nilsson EE et al (2006) Platelet-derived growth factor modulates the primordial to primary follicle transition. Reproduction 131:1007–1015

    Article  PubMed  CAS  Google Scholar 

  • Nilsson E et al (2007) Actions of anti-Mullerian hormone on the ovarian transcriptome to inhibit primordial to primary follicle transition. Reproduction 134:209–221

    Article  PubMed  CAS  Google Scholar 

  • Nilsson E et al (2009) Neurotrophin NT3 promotes ovarian primordial to primary follicle transition. Reproduction 138:697–707

    Article  PubMed  CAS  Google Scholar 

  • Orisaka M et al (2006) Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol Endocrinol 20:2456–2468

    Article  PubMed  CAS  Google Scholar 

  • Orisaka M et al (2009) Growth differentiation factor 9 promotes rat preantral follicle growth by up-regulating follicular androgen biosynthesis. Endocrinology 150:2740–2748

    Article  PubMed  CAS  Google Scholar 

  • Otsuka F et al (2001) Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem 276:11387–11392

    Article  PubMed  CAS  Google Scholar 

  • Paredes A et al (2004) TrkB receptors are required for follicular growth and oocyte survival in the mammalian ovary. Dev Biol 267:430–449

    Article  PubMed  CAS  Google Scholar 

  • Pedersen T (1969) Follicle growth in the immature mouse ovary. Acta Endocrinol 62:117–132

    PubMed  CAS  Google Scholar 

  • Pedersen T (1970) Follicle kinetics in the ovary of the cyclic mouse. Acta Endocrinol 64:304–323

    PubMed  CAS  Google Scholar 

  • Pedersen T, Peters H (1968) Proposal for a classification of oocytes and follicles in the mouse ovary. J Reprod Fertil 17:555–557

    Article  PubMed  CAS  Google Scholar 

  • Pedersen T, Peters H (1971) Follicle growth and cell dynamics in the mouse ovary during pregnancy. Fertil Steril 22:42–52

    PubMed  CAS  Google Scholar 

  • Pepling ME et al (2009) Differences in oocyte development and estradiol sensitivity among mouse strains. Reproduction 139(2):349–357

    Article  PubMed  CAS  Google Scholar 

  • Picton H et al (1998) The molecular basis of oocyte growth and development. Mol Cell Endocrinol 145:27–37

    Article  PubMed  CAS  Google Scholar 

  • Picton HM et al (2008) The in vitro growth and maturation of follicles. Reproduction 136:703–715

    Article  PubMed  CAS  Google Scholar 

  • Rajareddy S et al (2007) p27kip1 (cyclin-dependent kinase inhibitor 1B) controls ovarian development by suppressing follicle endowment and activation and promoting follicle atresia in mice. Mol Endocrinol 21:2189–2202

    Article  PubMed  CAS  Google Scholar 

  • Reddy P et al (2005) Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development. Dev Biol 281:160–170

    Article  PubMed  CAS  Google Scholar 

  • Reddy P et al (2008) Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319:611–613

    Article  PubMed  CAS  Google Scholar 

  • Reddy P et al (2009) PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum Mol Genet 18:2813–2824

    Article  PubMed  CAS  Google Scholar 

  • Reynaud K, Driancourt MA (2000) Oocyte attrition. Mol Cell Endocrinol 163:101–108

    Article  PubMed  CAS  Google Scholar 

  • Richards JS et al (2002) Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog Horm Res 57:195–220

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues P et al (2008) Oogenesis: prospects and challenges for the future. J Cell Physiol 216:355–365

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues P et al (2009) Multiple mechanisms of germ cell loss in the perinatal mouse ovary. Reproduction 137:709–720

    Article  PubMed  CAS  Google Scholar 

  • Romero C et al (2002) Nerve growth factor induces the expression of functional FSH receptors in newly formed follicles of the rat ovary. Endocrinology 143:1485–1494

    Article  PubMed  CAS  Google Scholar 

  • Rowlands S (2009) New technologies in contraception. BJOG 116:230–239

    Article  PubMed  CAS  Google Scholar 

  • Schmidt KL et al (2005) Anti-Mullerian hormone initiates growth of human primordial follicles in vitro. Mol Cell Endocrinol 234:87–93

    Article  PubMed  CAS  Google Scholar 

  • Serafica MD et al (2005) Transcripts from a human primordial follicle cDNA library. Hum Reprod 20:2074–2091

    Article  PubMed  CAS  Google Scholar 

  • Shimasaki S et al (2003) The role of bone morphogenetic proteins in ovarian function. Reprod Suppl 61:323–337

    PubMed  CAS  Google Scholar 

  • Skinner MK (2005) Regulation of primordial follicle assembly and development. Hum Reprod Update 11:461–471

    Article  PubMed  Google Scholar 

  • Solovyeva EV et al (2000) Growth differentiation factor-9 stimulates rat theca-interstitial cell androgen biosynthesis. Biol Reprod 63:1214–1218

    Article  PubMed  CAS  Google Scholar 

  • Spears N et al (2003) The role of neurotrophin receptors in female germ-cell survival in mouse and human. Development 130:5481–5491

    Article  PubMed  CAS  Google Scholar 

  • Stewart CL et al (1992) Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359:76–79

    Article  PubMed  CAS  Google Scholar 

  • Su YQ et al (2004) Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol 276:64–73

    Article  PubMed  CAS  Google Scholar 

  • Su YQ et al (2008) Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135:111–121

    Article  PubMed  CAS  Google Scholar 

  • Su YQ et al (2009) Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med 27:32–42

    Article  PubMed  CAS  Google Scholar 

  • Sugiura K et al (2007) Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 134:2593–2603

    Google Scholar 

  • Teixeira Filho FL et al (2002) Aberrant expression of growth differentiation factor-9 in oocytes of women with polycystic ovary syndrome. J Clin Endocrinol Metab 87:1337–1344

    Article  PubMed  CAS  Google Scholar 

  • Tingen C et al (2009) The primordial pool of follicles and nest breakdown in mammalian ovaries. Mol Hum Reprod 15(12):795–803

    Article  PubMed  Google Scholar 

  • Trombly DJ et al (2009) Roles for transforming growth factor beta superfamily proteins in early folliculogenesis. Semin Reprod Med 27:14–23

    Article  PubMed  CAS  Google Scholar 

  • Uda M et al (2004) Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet 13:1171–1181

    Article  PubMed  CAS  Google Scholar 

  • van Rooij IAJ et al (2002) Serum anti-Mullerian hormone levels: a novel measure of ovarian reserve. Hum Reprod 17:3065–3071

    Article  PubMed  Google Scholar 

  • Visser JA, Themmen APN (2005) Anti-MĂĽllerian hormone and folliculogenesis. Mol Cell Endocrinol 234:81–86

    Article  PubMed  CAS  Google Scholar 

  • Visser JA et al (2006) Anti-Mullerian hormone: a new marker for ovarian function. Reproduction 131:1–9

    Article  PubMed  CAS  Google Scholar 

  • Vitt UA et al (2000) Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod 62:370–377

    Article  PubMed  CAS  Google Scholar 

  • Vitt UA et al (2002) Bone morphogenetic protein receptor type II is a receptor for growth differentiation factor-9. Biol Reprod 67:473

    Article  PubMed  CAS  Google Scholar 

  • Wandji SA et al (1996) FSH and growth factors affect the growth and endocrine function in vitro of granulosa cells of bovine preantral follicles. Theriogenology 45:817–832

    Article  PubMed  CAS  Google Scholar 

  • Wang N et al (2009) Comparative proteome profile of immature rat ovary during primordial follicle assembly and development. Proteomics 9:3425–3434

    Article  PubMed  CAS  Google Scholar 

  • Weenen C et al (2004) Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod 10:77–83

    Article  PubMed  CAS  Google Scholar 

  • Wu X et al (2004) Interrelationship of growth differentiation factor 9 and inhibin in early folliculogenesis and ovarian tumorigenesis in mice. Mol Endocrinol 18:1509–1519

    Article  PubMed  CAS  Google Scholar 

  • Xiao YT et al (2007) Bone morphogenetic protein. Biochem Biophys Res Commun 362:550–553

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N et al (2002) Growth differentiation factor-9 inhibits 3'5'-adenosine monophosphate-stimulated steroidogenesis in human granulosa and theca cells. J Clin Endocrinol Metab 87:2849–2856

    Article  PubMed  CAS  Google Scholar 

  • Yan C et al (2001) Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol 15:854–866

    Article  PubMed  CAS  Google Scholar 

  • Yang MY, Fortune JE (2008) The capacity of primordial follicles in fetal bovine ovaries to initiate growth in vitro develops during mid-gestation and is associated with meiotic arrest of oocytes. Biol Reprod 78:1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Yang JL et al (2010) Testosterone induces redistribution of forkhead box-3a and down-regulation of growth and differentiation factor 9 messenger ribonucleic acid expression at early stage of mouse folliculogenesis. Endocrinology 151(2):774–782

    Article  PubMed  CAS  Google Scholar 

  • Yoshino O et al (2006) A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse. Proc Natl Acad Sci USA 103:10678–10683

    Google Scholar 

  • Zheng P, Dean J (2007) Oocyte-specific genes affect folliculogenesis, fertilization, and early development. Semin Reprod Med 25:243–251

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial assistance to EAM by the Australian Research Council, National Health and Medical Research Council, Hunter Medical Research Institute and the Newcastle Permanent Building Society Charitable Trust. APS is the recipient of an Australian Postgraduate Award PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen A. McLaughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McLaughlin, E.A., Sobinoff, A.P. (2010). Contraception Targets in Mammalian Ovarian Development. In: Habenicht, UF., Aitken, R. (eds) Fertility Control. Handbook of Experimental Pharmacology, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02062-9_4

Download citation

Publish with us

Policies and ethics