Skip to main content

Mouse Models as Tools in Fertility Research and Male-Based Contraceptive Development

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 198))

Abstract

The production of functional spermatozoa is a complex process requiring the coordinated expression of thousands of genes. It is likely that the intricate nature of these interactions contributes to the large number of idiopathic male infertility cases seen in humans. Conversely, the complexity of the highly regulated and interconnected processes of spermatogenesis and posttesticular sperm maturation events offers opportunities for the development of male-based contraceptive targets. The recent advances in genetic manipulation technologies and the completion of the human and mouse genome sequencing programs have provided scientists with sophisticated ways to generate mouse models for the study of basic biological mechanisms, in order to understand disease pathology and develop novel therapeutic approaches. The three common types of mouse model used for medical research are transgenic, knockout/knockin, and chemical-induced point mutant mice. Each type has relative strengths and weaknesses with respect to its fidelity to the disease processes in humans. In this chapter, we focus on the utility of the different types of mouse model in obtaining a better understanding of the mechanisms that control spermatogenesis and developing male-based contraceptive regimens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acevedo-Arozena A, Wells S, Potter P et al (2008) ENU mutagenesis, a way forward to understand gene function. Annu Rev Genomics Hum Genet 9:49–69

    Article  PubMed  CAS  Google Scholar 

  • Aitken RJ, Nixon B, Lin M et al (2007) Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian J Androl 9:554–564

    Article  PubMed  CAS  Google Scholar 

  • Allan CM, Garcia A, Spaliviero J et al (2004) Complete Sertoli cell proliferation induced by follicle-stimulating hormone (FSH) independently of luteinizing hormone activity: evidence from genetic models of isolated FSH action. Endocrinology 145:1587–1593

    Article  PubMed  CAS  Google Scholar 

  • Allan CM, Handelsman DJ (2005) Transgenic models for exploring gonadotropin biology in the male. Endocrine 26:235–239

    Article  PubMed  CAS  Google Scholar 

  • Andrews J, Bouffard GG, Cheadle C et al (2000) Gene discovery using computational and microarray analysis of transcription in the Drosophila melanogaster testis. Genome Res 10:2030–2043

    Article  PubMed  CAS  Google Scholar 

  • Austin CP, Battey JF, Bradley A et al (2004) The knockout mouse project. Nat Genet 36:921–924

    Article  PubMed  CAS  Google Scholar 

  • Auwerx J, Avner P, Baldock R et al (2004) The European dimension for the mouse genome mutagenesis program. Nat Genet 36:925–927

    Article  PubMed  CAS  Google Scholar 

  • Beckers J, Wurst W, de Angelis MH (2009) Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. Nat Rev Genet 10(6):371–380

    Article  PubMed  CAS  Google Scholar 

  • Betz UA (1997) Generation and analysis of conditional mutant mice. Res Immunol 148:475–480

    Article  PubMed  CAS  Google Scholar 

  • Brough R, Papanastasiou AM, Porter AC (2007) Stringent and reproducible tetracycline-regulated transgene expression by site-specific insertion at chromosomal loci with pre-characterised induction characteristics. BMC Mol Biol 8:30

    Article  PubMed  Google Scholar 

  • Capecchi MR (1989a) Altering the genome by homologous recombination. Science 244:1288–1292

    Article  PubMed  CAS  Google Scholar 

  • Capecchi MR (1989b) The new mouse genetics: altering the genome by gene targeting. Trends Genet 5:70–76

    Article  PubMed  CAS  Google Scholar 

  • Chandler KJ, Chandler RL, Broeckelmann EM et al (2007) Relevance of BAC transgene copy number in mice: transgene copy number variation across multiple transgenic lines and correlations with transgene integrity and expression. Mamm Genome 18:693–708

    Article  PubMed  CAS  Google Scholar 

  • Church DM, Goodstadt L, Hillier LW et al (2009) Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 7:e1000112

    Article  PubMed  Google Scholar 

  • Clermont Y (1972) Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev 52:198–236

    PubMed  CAS  Google Scholar 

  • Collins FS, Finnell RH, Rossant J et al (2007) A new partner for the international knockout mouse consortium. Cell 129:235

    Article  PubMed  CAS  Google Scholar 

  • Cooke HJ, Saunders PT (2002) Mouse models of male infertility. Nat Rev Genet 3:790–801

    Article  PubMed  CAS  Google Scholar 

  • Cotton L, Gibbs GM, Sanchez-Partida LG et al (2006) FGFR-1 [corrected] signaling is involved in spermiogenesis and sperm capacitation. J Cell Sci 119:75–84

    Article  PubMed  CAS  Google Scholar 

  • de Kretser DM, Loveland KL, Meinhardt A et al (1998) Spermatogenesis. Hum Reprod 13(Suppl 1):1–8

    Article  PubMed  Google Scholar 

  • de Lamirande E, Leclerc P, Gagnon C (1997) Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod 3:175–194

    Article  PubMed  Google Scholar 

  • Escalier D (2006) Knockout mouse models of sperm flagellum anomalies. Hum Reprod Update 12:449–461

    Article  PubMed  CAS  Google Scholar 

  • Esposito G, Jaiswal BS, Xie F et al (2004) Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. Proc Natl Acad Sci USA 101:2993–2998

    Article  PubMed  CAS  Google Scholar 

  • Fawcett DW (1975) The mammalian spermatozoon. Dev Biol 44:394–436

    Article  PubMed  CAS  Google Scholar 

  • Gardiner WJ, Teboul L (2009) Overexpression transgenesis in mouse: pronuclear injection. Meth Mol Biol 561:111–126

    Article  CAS  Google Scholar 

  • Georgel P, Du X, Hoebe K et al (2008) ENU mutagenesis in mice. Meth Mol Biol 415:1–16

    CAS  Google Scholar 

  • Geyer CB, Inselman AL, Sunman JA et al (2009) A missense mutation in the Capza3 gene and disruption of F-actin organization in spermatids of repro32 infertile male mice. Dev Biol 330:142–152

    Article  PubMed  CAS  Google Scholar 

  • Giraldo P, Montoliu L (2001) Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res 10:83–103

    Article  PubMed  CAS  Google Scholar 

  • Gong JS, Kobayashi M, Hayashi H et al (2002) Apolipoprotein E (ApoE) isoform-dependent lipid release from astrocytes prepared from human ApoE3 and ApoE4 knock-in mice. J Biol Chem 277:29919–29926

    Article  PubMed  CAS  Google Scholar 

  • Heintz N (2001) BAC to the future: the use of bac transgenic mice for neuroscience research. Nat Rev Neurosci 2:861–870

    Article  PubMed  CAS  Google Scholar 

  • Hogan B (1983) Molecular biology. Enhancers, chromosome position effects, and transgenic mice. Nature 306:313–314

    Article  PubMed  CAS  Google Scholar 

  • Howden SE, Voullaire L, Wardan H, Williamson R, Vadolas J (2008) Site-specific, Rep-mediated integration of the intact beta-globin locus in the human erythroleukaemic cell line K562. Gene Ther 15:372–383

    Article  Google Scholar 

  • Ikawa M, Wada I, Kominami K et al (1997) The putative chaperone calmegin is required for sperm fertility. Nature 387:607–611

    Article  PubMed  CAS  Google Scholar 

  • Inoue N, Ikawa M, Isotani A et al (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238

    Article  PubMed  CAS  Google Scholar 

  • Jin J, Jin N, Zheng H et al (2007) Catsper3 and Catsper4 are essential for sperm hyperactivated motility and male fertility in the mouse. Biol Reprod 77:37–44

    Article  PubMed  CAS  Google Scholar 

  • Jones R (1998) Plasma membrane structure and remodelling during sperm maturation in the epididymis. J Reprod Fertil Suppl 53:73–84

    PubMed  CAS  Google Scholar 

  • Kennedy CL, O’Bryan MK (2006) N-ethyl-N-nitrosourea (ENU) mutagenesis and male fertility research. Hum Reprod Update 12:293–301

    Article  PubMed  CAS  Google Scholar 

  • Lessard C, Pendola JK, Hartford SA et al (2004) New mouse genetic models for human contraceptive development. Cytogenet Genome Res 105:222–227

    Article  PubMed  CAS  Google Scholar 

  • Lessard C, Lothrop H, Schimenti JC, Handel MA (2007) Mutagenesis-generated mouse models of human infertility with abnormal sperm. Hum Reprod 22:159–166

    Article  PubMed  CAS  Google Scholar 

  • Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2:743–755

    Article  PubMed  CAS  Google Scholar 

  • Lute KD, May KF Jr, Lu P et al (2005) Human CTLA4 knock-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti-CTLA-4 antibodies. Blood 106:3127–3133

    Article  PubMed  CAS  Google Scholar 

  • Mallon AM, Blake A, Hancock JM (2008) EuroPhenome and EMPReSS: online mouse phenotyping resource. Nucleic Acids Res 36:D715–D718

    Article  PubMed  CAS  Google Scholar 

  • Matzuk MM, Lamb DJ (2002) Genetic dissection of mammalian fertility pathways. Nat Cell Biol 4(Suppl):s41–s49

    PubMed  Google Scholar 

  • Matzuk MM, Lamb DJ (2008) The biology of infertility: research advances and clinical challenges. Nat Med 14:1197–1213

    Article  PubMed  CAS  Google Scholar 

  • McLachlan RI, Mallidis C, Ma K et al (1998) Genetic disorders and spermatogenesis. Reprod Fertil Dev 10:97–104

    Article  PubMed  CAS  Google Scholar 

  • Menalled LB, Sison JD, Wu Y et al (2002) Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington’s disease knock-in mice. J Neurosci 22:8266–8276

    PubMed  CAS  Google Scholar 

  • Monaco AP, Larin Z (1994) YACs, BACs, PACs and MACs: artificial chromosomes as research tools. Trends Biotechnol 12:280–286

    Article  PubMed  CAS  Google Scholar 

  • Naz RK, Engle A, None R (2009) Gene knockouts that affect male fertility: novel targets for contraception. Front Biosci 14:3994–4007

    Article  PubMed  CAS  Google Scholar 

  • Nelms KA, Goodnow CC (2001) Genome-wide ENU mutagenesis to reveal immune regulators. Immunity 15:409–418

    Article  PubMed  CAS  Google Scholar 

  • Nord AS, Chang PJ, Conklin BR et al (2006) The International Gene Trap Consortium Website: a portal to all publicly available gene trap cell lines in mouse. Nucleic Acids Res 34:D642–D648

    Article  PubMed  CAS  Google Scholar 

  • O’Bryan MK, de Kretser D (2006) Mouse models for genes involved in impaired spermatogenesis. Int J Androl 29:76–89, discussion 105–108

    Article  PubMed  Google Scholar 

  • Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci USA 89:6861–6865

    Article  PubMed  CAS  Google Scholar 

  • Papathanasiou P, Perkins AC, Cobb BS et al (2003) Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity 19:131–144

    Article  PubMed  CAS  Google Scholar 

  • Philipps DL, Wigglesworth K, Hartford SA et al (2008) The dual bromodomain and WD repeat-containing mouse protein BRWD1 is required for normal spermiogenesis and the oocyte-embryo transition. Dev Biol 317:72–82

    Article  PubMed  CAS  Google Scholar 

  • Primakoff P, Myles DG (2002) Penetration, adhesion, and fusion in mammalian sperm-egg interaction. Science 296:2183–2185

    Article  PubMed  CAS  Google Scholar 

  • Qi H, Moran MM, Navarro B et al (2007) All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci USA 104:1219–1223

    Article  PubMed  CAS  Google Scholar 

  • Quill TA, Sugden SA, Rossi KL, Doolittle LK, Hammer RE, Garbers DL (2003) Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc Natl Acad Sci USA 100:14869–14874

    Article  PubMed  CAS  Google Scholar 

  • Quwailid MM, Hugill A, Dear N et al (2004) A gene-driven ENU-based approach to generating an allelic series in any gene. Mamm Genome 15:585–591

    Article  PubMed  CAS  Google Scholar 

  • Reinke V, Smith HE, Nance J et al (2000) A global profile of germline gene expression in C. elegans. Mol Cell 6:605–616

    Article  PubMed  CAS  Google Scholar 

  • Ren D, Navarro B, Perez G et al (2001) A sperm ion channel required for sperm motility and male fertility. Nature 413: 603–609

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez CI, Buchholz F, Galloway J et al (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25:139–140

    Article  PubMed  CAS  Google Scholar 

  • Sada A, Suzuki A, Suzuki H et al (2009) The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science 325:1394–1398

    Article  PubMed  CAS  Google Scholar 

  • Schneider M, Forster H, Boersma A et al (2009) Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J 23:3233–3242

    Article  PubMed  CAS  Google Scholar 

  • Schultz N, Hamra FK, Garbers DL (2003) A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA 100:12201–12206

    Article  PubMed  CAS  Google Scholar 

  • Smithies O, Gregg RG, Boggs SS et al (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317:230–234

    Article  PubMed  CAS  Google Scholar 

  • Sotillo R, Dubus P, Martin J et al (2001) Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors. EMBO J 20:6637–6647

    Article  PubMed  CAS  Google Scholar 

  • Stanford WL, Cohn JB, Cordes SP (2001) Gene-trap mutagenesis: past, present and beyond. Nat Rev Genet 2:756–768

    Article  PubMed  CAS  Google Scholar 

  • Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150:467–486

    CAS  Google Scholar 

  • Stryke D, Kawamoto M, Huang CC et al (2003) BayGenomics: a resource of insertional mutations in mouse embryonic stem cells. Nucleic Acids Res 31:278–281

    Article  PubMed  CAS  Google Scholar 

  • Teboul L (2009) Transgene design and delivery into the mouse genome: keys to success. Meth Mol Biol 561:105–110

    Article  CAS  Google Scholar 

  • Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512

    Article  PubMed  CAS  Google Scholar 

  • Van Keuren ML, Gavrilina GB, Filipiak WE, Zeidler MG, Saunders TL (2009) Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Res 18:769–785

    Article  PubMed  Google Scholar 

  • Wang RS, Yeh S, Tzeng CR et al (2009) Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev 30:119–132

    Article  PubMed  Google Scholar 

  • Ward JO, Reinholdt LG, Hartford SA et al (2003) Toward the genetics of mammalian reproduction: induction and mapping of gametogenesis mutants in mice. Biol Reprod 69:1615–1625

    Article  PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  • Wigley P, Becker C, Beltrame J et al (1994) Site-specific transgene insertion: an approach. Reprod Fertil Dev 6:585–588

    Article  PubMed  CAS  Google Scholar 

  • Yan W (2009) Male infertility caused by spermiogenic defects: lessons from gene knockouts. Mol Cell Endocrinol 306:24–32

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Wang AM, Robins DM et al (2009) Altered RNA splicing contributes to skeletal muscle pathology in Kennedy disease knock-in mice. Dis Model Mech 2:500–507

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moira K. O’Bryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jamsai, D., O’Bryan, M.K. (2010). Mouse Models as Tools in Fertility Research and Male-Based Contraceptive Development. In: Habenicht, UF., Aitken, R. (eds) Fertility Control. Handbook of Experimental Pharmacology, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02062-9_10

Download citation

Publish with us

Policies and ethics