Skip to main content

Thermochemical and Kinetic Databases for the Solar Cell Silicon Materials

  • Chapter
  • First Online:

Part of the book series: Advances in Materials Research ((ADVSMATERIALS,volume 14))

Abstract

The fabrication of solar cell grade silicon (SOG-Si) feedstock involves processes that require direct contact between solid and a fluid phase at near equilibrium conditions. Knowledge of the phase diagram and thermochemical properties of the Si-based system is, hence, important for providing boundary conditions in the analysis of processes. A self-consistent thermodynamic description of the Si-Ag-Al-As-Au-B-Bi-C-Ca-Co-Cr-Cu-Fe-Ga-Ge-In-Li-Mg-Mn-Mo-N-Na-Ni-O-P-Pb-S-Sb-Sn-Te-Ti-V-W-Zn-Zr system has recently been developed by SINTEF Materials and Chemistry. The assessed database has been designed for use within the composition space associated with the SoG-Si materials. An assessed kinetic database covers the same system as in the thermochemical database. The impurity diffusivities of Ag, Al, As, Au, B, Bi, C, Co, Cu, Fe, Ga, Ge, In, Li, Mg, Mn, N, Na, Ni, O, P, Sb, Te, Ti, Zn and the self diffusivity of Si in both solid and liquid silicon have extensively been investigated. The databases can be regarded as the state-of-art equilibrium relations in the Si-based multicomponent system. The thermochemical database has further been extended to simulate the surface tensions of liquid Si-based melts. Many surface-related properties, e.g., temperature and composition gradients, surface excess quantity, and even the driving force due to the surface segregation are possible to obtain directly from the database. By coupling the Langmuir-McLean segregation model, the grain boundary segregations of the nondoping elements in polycrystalline silicon are also possible to estimate from the assessed thermochemical properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.T. Dinsdale, CALPHAD 15, 317 (1991)

    Article  CAS  Google Scholar 

  2. E.R. Weber, Appl. Phys. A 30, 1 (1983)

    Article  ADS  Google Scholar 

  3. T. Yoshikawa, K. Arimura, K. Morita, Metall. Mater. Trans. B 36, 837 (2005)

    Article  Google Scholar 

  4. T. Yoshikawa, K. Morita, Metall. Mater. Trans. B 36, 731 (2005)

    Article  Google Scholar 

  5. T. Yoshikawa, K. Morita, Sci. Technol. Adv. Mater. 4, 531 (2003)

    Article  CAS  Google Scholar 

  6. T. Shimpo, T. Yoshikawa, K. Morita, Metall. Mater. Trans. B 35, 277 (2004)

    Article  Google Scholar 

  7. G. Inoue, T. Yoshikawa, K. Morita, High Temp. Mater. Processes 22, 221 (2003)

    CAS  Google Scholar 

  8. R.C. Miller, A. Savage, J. Appl. Phys. 27, 1430 (1956)

    Article  ADS  CAS  Google Scholar 

  9. D. Navon, V. Chernyshov, J. Appl. Phys. 28, 823 (1957)

    Article  ADS  CAS  Google Scholar 

  10. V.N. Lozovskii, A.I. Udyanskaya, Izvestiya Akademii Nauk SSSR-Neorganicheskie Materialy (Translate: Inorg. Mater.) 4, 1174 (1968)

    CAS  Google Scholar 

  11. T. Yoshikawa, K. Morita, J. Electrochem. Soc. 150, G465 (2003)

    Article  CAS  Google Scholar 

  12. T. Miki, K. Morita, N. Sano, Mater. Trans. JIM 40, 1108 (1999)

    CAS  Google Scholar 

  13. T. Miki, K. Morita, N. Sano, Metall. Mater. Trans. B, 1998. 29(5): p. 1043–1049

    Article  Google Scholar 

  14. L. Ottem, Løselighet og termodynamiske data for oksygen og karbon i flytende legeringer av silisium of ferrosilisium (SINTEF Metallurgy, Trondheim, Norway, 1993), p. 1

    Google Scholar 

  15. W. Klemm, P. Pirscher, Z. Anorg. Chem. 247, 211 (1941)

    Article  CAS  Google Scholar 

  16. Y.A. Ugay, S.N. Miroshnichenko, Izn. Akad. Nauk SSSR Neorg. Mat. 9, 2051 (1973)

    Google Scholar 

  17. Y.A. Ugay et al., Fiz.Kh.im.Prots.Polyprouod Pouerk.h, 138 (1981)

    Google Scholar 

  18. F.A. Trumbore, Bell Syst. Tech. J. 39, 205 (1960)

    Google Scholar 

  19. J.S. Sandhu, J.L. Reuter, IBM J. Res. Dev. 15, 464 (1971)

    Article  CAS  Google Scholar 

  20. R.B. Fair, G.R. Weber, J. Appl. Phys. 44, 273 (1973)

    Article  ADS  CAS  Google Scholar 

  21. S. Ohkawa, Y. Nakajima, Y. Fukukawa, Jpn. J. Appl. Phys. 14, 458 (1975)

    Article  ADS  CAS  Google Scholar 

  22. F.B. Fair, J.C.C. Tsai, J. Electrochem. Soc. 122, 1689 (1975)

    Article  CAS  Google Scholar 

  23. N. Miyamoto, E. Kuroda, S. Yoshida, SAE Prepr. 408 (1973)

    Google Scholar 

  24. V.I. Belousov, Russian J. Phys. Chem. 53, 1266 (1979)

    Google Scholar 

  25. S. Fries, H.L. Lukas, in COST507: Thermodynamic Assessment of the Si-B system, 1998, p. 77

    Google Scholar 

  26. C. Brosset, B. Magnusson, Nature 187, 54 (1960)

    Article  ADS  CAS  Google Scholar 

  27. B. Armas et al., J. Less Common Metals 82, 245 (1981)

    Article  CAS  Google Scholar 

  28. G. Male, D. Salanoubat, Revue Inter. Haut. Temp. Refrac. fractaires 18, 109 (1981)

    CAS  Google Scholar 

  29. J. Hesse, Zeitschrift fur Metallkunde 59, 499 (1968)

    CAS  Google Scholar 

  30. G. V. Samsonov, V. M. Sleptsov: Russ. J. Inorg. Chem., 8 1047(1963)

    Google Scholar 

  31. R. Noguchi et al., Metall. Mater. Trans. B 25, 903 (1994)

    Article  Google Scholar 

  32. A.I. Zaitsev, A.A. Kodentsov, J. Phase Equilib. 22, 126 (2001)

    Article  CAS  Google Scholar 

  33. T. Yoshikawa, K. Morita, Mater. Trans. 46, 1335 (2005)

    Article  CAS  Google Scholar 

  34. R.I. Scace, G.A. Slack, J. Chem. Phys. 30, 1551 (1959)

    Article  ADS  CAS  Google Scholar 

  35. R.N. Hall, J. Appl. Phys. 29, 914 (1958)

    Article  ADS  CAS  Google Scholar 

  36. Y. Iguchi, T. Narushima, in First International Conference on Processing Materials for Properties, 1991

    Google Scholar 

  37. H. Kleykamp, G. Schumacher, Berichte der Bunsen-Gesellschaft-Phys. Chem. Chem. Phys. 97, 799 (1993)

    CAS  Google Scholar 

  38. L.L. Oden, R.A. McCune, Metall. Trans. A 18, 2005 (1987)

    Article  Google Scholar 

  39. T. Nozaki, Y. Yatsurugi, N. Akiyama, J. Electrochem. Soc. 117, 1566 (1970)

    Article  CAS  Google Scholar 

  40. A.R. Bean, R.C. Newman, J. Phys. Chem. Solids 32, 1211 (1971)

    Article  ADS  CAS  Google Scholar 

  41. R.C. Newman, Mater. Sci. Eng. B 36, 1 (1996)

    Article  Google Scholar 

  42. J. Grobner, H.L. Lukas, J.C. Anglezio, CALPHAD 20, 247 (1996)

    Article  Google Scholar 

  43. H. Dalaker, M. Tangstad, in 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 2008

    Google Scholar 

  44. A.A. Istratov, H. Hieslmair, E.R. Weber, Appl. Phys. A 69, 13 (1999)

    Article  ADS  CAS  Google Scholar 

  45. H. Feichtinger, Acta Phys. Aust. 51, 161 (1979)

    CAS  Google Scholar 

  46. Y.H. Lee, R.L. Kleinhenz, J.W. Corbett, Appl. Phys. Lett. 31, 142 (1977)

    Article  ADS  CAS  Google Scholar 

  47. S.A. McHugo et al., Appl. Phys. Lett. 73, 1424 (1998)

    Article  ADS  CAS  Google Scholar 

  48. E.G. Colas, E.R. Weber, Appl. Phys. Lett. 48, 1371 (1986)

    Article  ADS  CAS  Google Scholar 

  49. E. Weber, H.G. Riotte, J. Appl. Phys. 51, 1484 (1980)

    Article  ADS  CAS  Google Scholar 

  50. J.D. Struthers, J. Appl. Phys. 27, 1560 (1956)

    Article  ADS  CAS  Google Scholar 

  51. H. Nakashima et al., Jpn. J. Appl. Phys. 27, 1542 (1988)

    Article  ADS  CAS  Google Scholar 

  52. D. Gilles, W. Schröter, W. Bergholz, Phys. Rev. B 41, 5770 (1990)

    Article  ADS  CAS  Google Scholar 

  53. J. Lacaze, B. Sundman, Metall. Trans. A 22, 2211 (1991)

    Article  Google Scholar 

  54. T.G. Chart, High Temp. High Pressures 2, 461 (1970)

    CAS  Google Scholar 

  55. T. Miki, K. Morita, N. Sano, Metall. Mater. Trans. B 28, 861 (1997)

    Article  Google Scholar 

  56. C.C. Hsu, A.Y. Polyakov, A.M. Samarin, Izv. Vyssh. Uchebn. Zaved. Chern. Metall. 12 (1961)

    CAS  Google Scholar 

  57. T. Taishi et al., Jpn. J. Appl. Phys. Lett. 38, L223 (1999)

    Article  ADS  CAS  Google Scholar 

  58. Y. Yatsurugi et al., J. Electrochem. Soc. 120, 975 (1973)

    Article  CAS  Google Scholar 

  59. T. Narushima et al., Mater. Trans. Jim. 35, 821 (1994)

    CAS  Google Scholar 

  60. W. Kaiser, C.D. Thurmond, J. Appl. Phys. 30, 427 (1959)

    Article  ADS  CAS  Google Scholar 

  61. M.W. Chase, NIST-JANAF Thermochemical Tables, vol. 2b (Published by the American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology, Woodbury, N.Y., 1998)

    Google Scholar 

  62. S.M. Schnurre, J. Grobner, R. Schmid-Fetzer, J. Noncryst. Solids 336, 1 (2004)

    Article  ADS  CAS  Google Scholar 

  63. H. Hirata, K. Hoshikawa, J. Cryst. Growth 1990, 657 (1990)

    Article  ADS  Google Scholar 

  64. H.J. Hrostowski, R.H. Kaiser, J. Phys. Chem. Solids 11, 214 (1959)

    Article  Google Scholar 

  65. X.M. Huang et al., Jpn. J. Appl. Phys. 32, 3671 (1993)

    Article  ADS  CAS  Google Scholar 

  66. R.A. Logan, A.J. Peters, J. Appl. Phys. 30, 1627 (2007)

    Article  ADS  Google Scholar 

  67. J. Gass, et al., J. Appl. Phys. 51, 2030 (1980)

    Article  ADS  CAS  Google Scholar 

  68. T. Narushima et al., Mater. Trans. Jim 35, 522 (1994)

    CAS  Google Scholar 

  69. A.I. Zaitsev, A.D. Litvina, N.E. Shelkova, High Temp. High Pressure 39, 227 (2001)

    CAS  Google Scholar 

  70. J.R.A. Carlsson et al., J. Vac. Sci. Technol. A Vac. Surf. Films 15, 8 (1997)

    Article  Google Scholar 

  71. V.B. Giessen, R. Vogel, Z. Metallkde. 50, 274 (1959)

    Google Scholar 

  72. J. Korb, K. Hein, Z. Anorg. Allg. Chine., 425, 281 (1976)

    Article  CAS  Google Scholar 

  73. T. Miki, K. Morita, N. Sano, Metall. Mater. Trans. B 27, 937 (1996)

    Article  Google Scholar 

  74. B.C. Anusionwu, F.O. Ogundare, C.E. Orji, Indian J. Phys. Proc. Indian Assoc. Cultivation Sci. A 77A, 275 (2003)

    CAS  Google Scholar 

  75. Y.A. Ugai et al., Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy 17, 1150 (1981)

    CAS  Google Scholar 

  76. K. Uda, M. Kamoshida, J. Appl. Phys. 48, 18 (1977)

    Article  ADS  CAS  Google Scholar 

  77. E. Kooi, J. Electrochem. Soc. 111, 1383 (1964)

    Article  CAS  Google Scholar 

  78. N.K. Abrikosov, V.M. Glazov, L. Chen-yuan, Russ. J. Inorg. Chem. 7, 429 (1962)

    Google Scholar 

  79. S. Solmi et al., Phys. Rev. B 53, 7836 (1996)

    Article  ADS  CAS  Google Scholar 

  80. M. Tamura, Philos. Mag. 35, 663 (1977)

    Article  ADS  CAS  Google Scholar 

  81. R.O. Carlson, R.N. Hall, E.M. Pell, J. Phys. Chem. Solids 8, 81 (1959)

    Article  ADS  CAS  Google Scholar 

  82. F. Rollert, N.A. Stolwijk, H. Mehrer, Appl. Phys. Lett. 63, 506 (1993)

    Article  ADS  CAS  Google Scholar 

  83. P. Migliorato, A.W. Vere, C.T. Elliott, Appl. Phys. 11, 295 (1976)

    Article  ADS  CAS  Google Scholar 

  84. J.J. Rohan, N.E. Pickering, J. Kennedy, J. Electrochem. Soc. 106, 705 (1959)

    Article  CAS  Google Scholar 

  85. C.D. Thurmond, M. Kowalchik, Bell Syst. Tech. J. 39, 169 (1960)

    Google Scholar 

  86. S.H. Song et al., J. Electrochem. Soc. 129, 841 (1982)

    Article  CAS  Google Scholar 

  87. D. Nobili et al., J. Electrochem. Soc. 136, 1142 (1989)

    Article  CAS  Google Scholar 

  88. A. Sato et al., Roc. IEEE 1995 Int. Conference on Microelectronic Test Structures, Vol8, March 1995, Nara, Japan

    Google Scholar 

  89. F.A. Trumbore, P.E. Freeland, R.A. Logan, J. Electrochem. Soc. 108, 458 (1961)

    Article  CAS  Google Scholar 

  90. Y. Du et al., Mater. Sci. Eng. A 363, 140 (2003)

    Article  CAS  Google Scholar 

  91. J.O. Andersson et al., CALPHAD 26, 273 (2002)

    Article  CAS  Google Scholar 

  92. I. Stich, R. Car, M. Parrinello, Phys. Rev. B 44, 4262 (1991)

    Article  ADS  CAS  Google Scholar 

  93. C.Z. Wang, C.T. Chan, K.M. Ho, Phys. Rev. B 45, 12227 (1992)

    Article  ADS  CAS  Google Scholar 

  94. W. Yu, Z.Q. Wang, D. Stroud, Phys. Rev. B 54, 13946 (1996)

    Article  ADS  CAS  Google Scholar 

  95. Y. Liu et al., Scr. Mater. 55, 367 (2006)

    Article  CAS  Google Scholar 

  96. T. Iida, R. Guthrie, N. Tripathi, Metall. Mater. Trans. B 37, 559 (2006)

    Article  Google Scholar 

  97. D. Demireva, B. Lammel, J. Phys. D Appl. Phys. 30, 1972 (1997)

    Article  ADS  CAS  Google Scholar 

  98. G.S. Fuller, J.A. Ditzenberger, J. Appl. Phys. 27, 544 (1956)

    Article  ADS  CAS  Google Scholar 

  99. B. Goldstein, Bull. Am. Phys. Soc. Ser. II, 145 (1956)

    Google Scholar 

  100. R.N. Ghoshtagore, Phys. Rev. B 3, 2507 (1971)

    Article  ADS  Google Scholar 

  101. W. Rosnowski, J. Electrochem. Soc. 125, 957 (1978)

    Article  CAS  Google Scholar 

  102. M. Chang, J. Electrochem. Soc. 128, 1987 (1981)

    Article  CAS  Google Scholar 

  103. G. Galvagno et al., Semiconductor Sci. Technol. 8, 488 (1993)

    Article  ADS  CAS  Google Scholar 

  104. D. Nagel, C. Frohne, R. Sittig, Appl. Phys. A 60, 61 (1995)

    Article  ADS  Google Scholar 

  105. H. Mitlehner, H-J. Schulze, EPE J. 4, 37 (1994)

    Google Scholar 

  106. J.P. Garandet, Int. J. Thermophys. 28, 1285 (2007)

    Article  CAS  Google Scholar 

  107. H. Kodera, Jpn. J. Appl. Phys. 2, 212 (1963)

    Article  ADS  CAS  Google Scholar 

  108. E.A. Perozziello, P.B. Griffin, J.D. Plummer, Appl. Phys. Lett. 61, 303 (1992)

    Article  ADS  CAS  Google Scholar 

  109. A.N. Larsen et al., Nuel. Instrum. Methods Phys. Res. B, 697 (1993)

    Article  ADS  Google Scholar 

  110. A. Merabet, C. Gontrand, Physica Status Solidi a-Appl. Res. 145, 77 (1994)

    Article  ADS  CAS  Google Scholar 

  111. B.J. Masters, J.M. Fairfield, J. Appl. Phys. 40, 2390 (1969)

    Article  ADS  CAS  Google Scholar 

  112. W.J. Armstrong, J. Electrochem. Soc. 109, 1065 (1962)

    Article  CAS  Google Scholar 

  113. P.S. Raju, N.R.K. Rao, E.V.K. Rao, Indian J. Pure Appl. Phys. 2, 353 (1964)

    CAS  Google Scholar 

  114. Y.W. Hsueh, Electrochem. Technol. 6, 361 (1968)

    CAS  Google Scholar 

  115. T.C. Chan, C.C. Mai, Proc. Inst. Electr. Electron. Eng. 58, 588 (1970)

    CAS  Google Scholar 

  116. R.N. Ghoshtagore, Phys. Rev. B 3, 397 (1971)

    Article  ADS  Google Scholar 

  117. C.S. Fuller, J.A. Ditzenberger, J. Appl. Phys. 25, 1439 (1954)

    Article  ADS  CAS  Google Scholar 

  118. E.L. Williams, J. Electrochem. Soc. 108 795 (1961)

    Article  CAS  Google Scholar 

  119. M.L. Barry, P. Olofsen, J. Electrochem. Soc. 116, 854 (1969)

    Article  CAS  Google Scholar 

  120. M. Okamura, Jpn. J. Appl. Phys. 8, 1440 (1969)

    Article  ADS  CAS  Google Scholar 

  121. D. Rakhimbaev, A. Avezmuradov, M.D. Rakhimbaeva, Inorg. Mater. 30, 418 (1994)

    Google Scholar 

  122. E. Dominguez, M. Jaraiz, J. Electrochem. Soc. 133, 1895 (1986)

    Article  CAS  Google Scholar 

  123. G.L. Vick, K.M. Whittle, J. Electrochem. Soc. 116, 1142 (1969)

    Article  CAS  Google Scholar 

  124. R.N. Ghoshtag, Phys. Rev. B 3, 389 (1971)

    Article  ADS  Google Scholar 

  125. W. Wijaranakula, Jpn. J. Appl. Phys. 32 3872 (1993)

    Article  ADS  CAS  Google Scholar 

  126. R. Pampuch, E. Walasek, J. Bialoskórski, Ceramics Int. 12, 99 (1986)

    Article  CAS  Google Scholar 

  127. N.N. Eremenko, G.G. Gnesin, M.M. Churakov, Powder Metall. Metal Ceramics 11, 471 (1972)

    Article  Google Scholar 

  128. A. Chari, P. de Mierry, M. Aucouturier, Revue de Physique Appliquée 22, 655 (1987)

    Article  CAS  Google Scholar 

  129. P. Schwalbach et al., Phys. Rev. Lett. 64, 1274 (1990)

    Article  PubMed  ADS  CAS  Google Scholar 

  130. L.C. Kimerling, J.L. Benton, J.J. RubIn, Inst. Phys. Conf. Ser. 59, 217 (1981)

    CAS  Google Scholar 

  131. T. Isobe, H. Nakashima, K. Hashimoto, Jpn. J. Appl. Phys. 28, 1282 (1989)

    Article  ADS  CAS  Google Scholar 

  132. V.A. Uskov, Sov. Phys. Semiconductors USSR (English Transl.) 8, 1573 (1975)

    Google Scholar 

  133. I. V. Antonova, K.B.K.E.V.N.L.S.S., Phys. Stat. Sol. (a) 76, K213 (1983)

    Article  ADS  CAS  Google Scholar 

  134. B.K. Miremadi, S.R. Morrison, J. Appl. Phys. 56, 1728 (1984)

    Article  ADS  CAS  Google Scholar 

  135. H. Nakashima et al., Jpn. J. Appl. Phys. 23, 776 (1984)

    Article  ADS  CAS  Google Scholar 

  136. Y. Itoh, T. Nozaki, Jpn. J. Appl. Phys. 24, 279 (1985)

    Article  ADS  CAS  Google Scholar 

  137. N. Stoddard et al., J. Appl. Phys. 97 (2005)

    Article  CAS  Google Scholar 

  138. H. Sawada et al., Phys. Rev. B 65, 075201 (2002)

    Article  ADS  CAS  Google Scholar 

  139. H. Akito et al., Appl. Phys. Lett. 54, 626 (1989)

    Article  Google Scholar 

  140. N. Fuma et al., Mater. Sci. Forum 196–201, 797 (1995)

    Article  Google Scholar 

  141. N. Fuma et al., Jpn. J. Appl. Phys. 35, 1993 (1996)

    Article  ADS  CAS  Google Scholar 

  142. J. Mukerji, S.K. Brahmachari, J. Am. Ceramic Soc. 64, 549 (1981)

    Article  CAS  Google Scholar 

  143. K.P. Abdurakhmanov et al., Sov. Phys. Semiconductors-USSR, 22, 1324 (1988)

    Google Scholar 

  144. J. Pelleg, M. Sinder, J. Appl. Phys. 76, 1511 (1994)

    Article  ADS  CAS  Google Scholar 

  145. F. Wittel, S. Dunham, Appl. Phys. Lett. 66, 1415 (1995)

    Article  ADS  CAS  Google Scholar 

  146. N. Jeng, S.T. Dunham, J. Appl. Phys. 72, 2049 (1992)

    Article  ADS  CAS  Google Scholar 

  147. K. Park et al., J. Electron. Mater. 20, 261 (1991)

    Article  ADS  CAS  Google Scholar 

  148. R. Deaton, U. Gosele, P. Smith, J. Appl. Phys. 67, 1793 (1990)

    Article  ADS  CAS  Google Scholar 

  149. C.S. Fuller, J.C. Severiens, Phys. Rev. 96, 21 (1954)

    Article  ADS  CAS  Google Scholar 

  150. D.A. Petrov, Y.M. Shaskov, I.P. Akimchenko, Chem. Abstr. (1960), p. 17190c.

    Google Scholar 

  151. M.O. Thurston, J.C.C. Tsai, Ohio State University Research Foundation, 1962

    Google Scholar 

  152. S. Nakanuma, S. Yamagishi, J. Electrochem. Soc. Jpn. 36, 3 (1968)

    CAS  Google Scholar 

  153. R.B. Fair, M.L. Manda, J.J. Wortman, J. Mater. Res. 1, 705 (1986)

    Article  ADS  CAS  Google Scholar 

  154. K. Nagata et al., in Handbook of Physico-Chemical Properties at High Temperatures ed. by Y. Kawai, Y. Shiraishi, (Iron and Steel Institute of Japan, Tokyo, Japan, 1988)

    Google Scholar 

  155. K. Yanaba et al., Mater. Trans. Jim 39, 819 (1998)

    CAS  Google Scholar 

  156. E.A. Guggenheim, Trans. Faraday Soc. 41, 150 (1945)

    Article  CAS  Google Scholar 

  157. J.A.V. Bulter, Proc. R. Soc. A135, 348 (1932)

    ADS  Google Scholar 

  158. P. Koukkari, R. Pajarre, CALPHAD 30, 18 (2006)

    Article  CAS  Google Scholar 

  159. S.V. Lukin, V.I. Zhuchkov, N.A. Vatolin, J. Less Common Metals 67, 399 (1979)

    Article  CAS  Google Scholar 

  160. K. Mukai et al., ISIJ Int. 40 (Supplement), S148 (2000)

    Article  CAS  Google Scholar 

  161. K. Mukai, Z.F. Yuan, Mater. Trans. Jim 41, 331 (2000)

    CAS  Google Scholar 

  162. X. Huang et al., J. Cryst. Growth 156, 52 (1995)

    Article  ADS  CAS  Google Scholar 

  163. Z. Niu et al., J. Jpn. Assoc. Cryst. Growth 23, 374 (1996)

    CAS  Google Scholar 

  164. B.J. Keene, Surf. Interf. Anal. 10, 367 (1987)

    Article  CAS  Google Scholar 

  165. P. Wynblatt, D. Chatain, Metall. Mater. Trans. A 37, 2595 (2006)

    Article  Google Scholar 

  166. D. McLean, Grain Boundaries in Metals, vol. 10 (Clarendon, Oxford, 1957), 346s

    Google Scholar 

  167. S. Pizzini et al., Appl. Phys. Lett. 51, 676 (1987)

    Article  ADS  CAS  Google Scholar 

  168. S. Isomae, S. Aoki, K. Watanabe, J. Appl. Phys. 55, 817 (1984)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tang, K., Øvrelid, E.J., Tranell, G., Tangstad, M. (2009). Thermochemical and Kinetic Databases for the Solar Cell Silicon Materials. In: Nakajima, K., Usami, N. (eds) Crystal Growth of Si for Solar Cells. Advances in Materials Research, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02044-5_13

Download citation

Publish with us

Policies and ethics