Skip to main content

Preserving Privacy versus Data Retention

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5532))

  • 593 Accesses

Abstract

The retention of communication data has recently attracted much public interest, mostly because of the possibility of its misuse. In this paper, we present protocols that address the privacy concerns of the communication partners. Our data retention protocols store streams of encrypted data items, some of which may be flagged as critical (representing misbehavior). The frequent occurrence of critical data items justifies the self-decryption of all recently stored data items, critical or not. Our first protocol allows the party gathering the retained data to decrypt all data items collected within, say, the last half year whenever the number of critical data items reaches some threshold within, say, the last month. The protocol ensures that the senders of data remain anonymous but may reveal that different critical data items came from the same sender. Our second, computationally more complex scheme obscures this affiliation of critical data with high probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, A., Li, H., Roy, K.: Drg-cache: a data retention gated-ground cache for low power. In: DAC, pp. 473–478. ACM, New York (2002)

    Google Scholar 

  2. Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)

    Google Scholar 

  3. Blakley, G.: Safeguarding cryptographic keys. In: AFIPS (1979)

    Google Scholar 

  4. Blanchette, J.-F., Johnson, D.G.: Data retention and the panoptic society: The social benefits of forgetfulness. The Information Society 18, 33–45 (2002)

    Article  Google Scholar 

  5. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo random bits. In: FOCS, pp. 112–117 (1982)

    Google Scholar 

  6. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–88 (1981)

    Article  Google Scholar 

  8. Chaum, D.: Security without identification: Transaction systems to make big brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

    Article  Google Scholar 

  9. Csirmaz, L.: The size of a share must be large. J. Cryptology 10(4), 223–231 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. European Parliament and Council. Directive 2006/24/EC (March 2006)

    Google Scholar 

  11. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptology 3(2), 99–111 (1991)

    Article  Google Scholar 

  12. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access structure. In: Globecom, pp. 99–102 (1987)

    Google Scholar 

  14. Jarecki, S., Shmatikov, V.: Handcuffing big brother: an abuse-resilient transaction escrow scheme. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 590–608. Springer, Heidelberg (2004)

    Google Scholar 

  15. Krawczyk, H.: Distributed fingerprints and secure information dispersal. In: PODC, pp. 207–218 (1993)

    Google Scholar 

  16. Landau, S.: Security, liberty, and electronic communications. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 355–372. Springer, Heidelberg (2004)

    Google Scholar 

  17. Marx, G.T.: An ethics for the new surveillance. Inf. Soc. 14(3) (1998)

    Google Scholar 

  18. Naor, M.: Bit commitment using pseudorandomness. J. Crypt. 4(2), 151–158 (1991)

    MATH  Google Scholar 

  19. Ng, K., Liu, H.: Customer retention via data mining. Artif. Intell. Rev. 14(6), 569–590 (2000)

    Article  MATH  Google Scholar 

  20. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault tolerance. J. ACM 36(2), 335–348 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Technical report, Cambridge, MA, USA (1996)

    Google Scholar 

  22. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  23. van Wanrooij, W., Pras, A.: Data on retention. In: Schönwälder, J., Serrat, J. (eds.) DSOM 2005. LNCS, vol. 3775, pp. 60–71. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Yao, A.C.-C.: Theory and applications of trapdoor functions. In: FOCS, pp. 80–91 (1982)

    Google Scholar 

  25. Zuccato, A., Rannenberg, K.: Data retention has serious consequences. CEPIS Position Paper, LSI SIN (04)01 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hinkelmann, M., Jakoby, A. (2009). Preserving Privacy versus Data Retention. In: Chen, J., Cooper, S.B. (eds) Theory and Applications of Models of Computation. TAMC 2009. Lecture Notes in Computer Science, vol 5532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02017-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02017-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02016-2

  • Online ISBN: 978-3-642-02017-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics