Skip to main content

Strategies for Utilizing Arbuscular Mycorrhizal Fungi and Phosphate-Solubilizing Microorganisms for Enhanced Phosphate Uptake and Growth of Plants in the Soils of the Tropics

  • Chapter
  • First Online:
Microbial Strategies for Crop Improvement

Abstract

One of the major constraints for plant productivity in tropical regions is low soil phosphate (Pi) availability. Phosphate ions are rendered unavailable for plant uptake due to adsorption onto the surface of soil minerals and precipitation by free aluminum and iron ions. In highly weathered soils, this is so intense that plant crops commonly exhibit Pi-deficiency. High rates of soluble Pi-fertilizers are employed to meet plant P demands. However, the large quantity of Pi required in order to offset the high Pi-retention capacity of the soils and the high cost associated with it makes it inaccessible to the vast majority of growers in the region. An alternative means of improving plant Pi-uptake from insoluble native and applied rock phosphate is the use of arbuscular mycorrhizal (AM) fungi. These fungi form a symbiotic association with most plants and improve the efficiency of associated plants to take up Pi from the soil solution. Other soil microorganisms commonly known as phosphate-solubilizing microorganisms (PSM) can replenish soil solution Pi by solubilizing complex phosphorus compounds found in soil or added to it, mostly through the release of organic acids. In this chapter, an attempt is made to highlight the interactions of these two distinct groups of soil microorganisms and the mechanisms by which they facilitate plant available Pi and enhance plant growth in the soils of the tropics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH (1994) Use of organic phosphorus by Rhizobium leguminosarum biovar. viceae phosphatases. Biol Fertil Soils 18:216–218

    CAS  Google Scholar 

  • Agnihorti VP (1970) Solubilization of insoluble phosphates by some soil fungi isolated from nursery seedbeds. Can J Microbiol 16:877–880

    Google Scholar 

  • Amos B, Walters DT (2006) Maize root biomass and net rhizodeposited carbon: an analysis of the literature. Soil Sci Soc Am J 70:1489–1503

    CAS  Google Scholar 

  • Asea PEA, Kucey RMN, Stewart JWB (1988) Inorganic phosphate solubilisation by 2 Penicillium species in solution culture and soil. Soil Biol Biochem 20:459–464

    CAS  Google Scholar 

  • Atlas R, Bartha R (1997) Microbial ecology. Addison Wesley, New York

    Google Scholar 

  • Azam F, Memon GH (1996) Soil organisms. In: Bashir E, Bantel R (eds) Soil science. National Book Foundation, Islamabad, pp 200–232

    Google Scholar 

  • Azcon C, Barea JM (1996) Interactions of arbuscular mycorrhiza with rhizosphere microorganisms. In: Guerrero E (ed) Mycorrhiza. Biological Soil Resource. FEN, Bogota, Colombia, pp 47–68

    Google Scholar 

  • Bache BW (1963) Aluminum and iron phosphates studies relating to soils. I. Solution and hydrolysis of variscite and strengite. J Soil Sci 14:113–123

    Google Scholar 

  • Bah A, Zaharah AR, Hussin A (2006) Phosphorus uptake from green manures and phosphate fertilizers applied in a acid tropical soil. Commun Soil Sci Plant Anal 37:2077–2093

    CAS  Google Scholar 

  • Banik S, Dey BK (1981a) Phosphate solubilizing microorganisms of a lateritic soil. I. Solubilization of inorganic and production of organic acids by microorganisms isolated in sucrose calcium phosphate agar plates. Zentralblatt Bakteriol Parasitenkunde infectionskarankheiten, hygiene. 2. Naturwiss Miikrobiology Landwirtsch 136:476–486

    Google Scholar 

  • Banik S, Dey BK (1981b) Phosphate solubilizing microorganisms of a lateritic soil. II. Effect of some tricalcium phosphate-solubilizing microorganisms on available phosphorus content of the soil. Zentralblatt Bakteriol. Parasitenkunde infectionskarankheiten, hygiene. 2. Naturwiss Miikrobiology Landwirtsch 136:487–492

    CAS  Google Scholar 

  • Banik S, Dey BK (1981c) Phosphate solubilizing microorganisms of a lateritic soil. III. Effect of inoculation of some tricalcium phosphate-solubilizing microorganisms on available phosphorus content of rhizosphere soils of rice (Oryza sativa L. cv. IR-20). Zentralblatt Bakteriol. Parasitenkunde infectionskarankheiten, hygiene. 2. Naturwiss Miikrobiology Landwirtsch 136:493–501

    CAS  Google Scholar 

  • Banik S, Dey BK (1982) Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate solubilizing microorganisms. Plant Soil 69:353–364

    CAS  Google Scholar 

  • Banik S, Dey BK (1983) Phosphate solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source. Zentralbl Mikrobiol 138:17–23

    CAS  PubMed  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley, New York

    Google Scholar 

  • Bar-Yosef B, Rogers RD, Wolfram JH, Richman E (1999) Pseudomonas cepacia-mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Sci Soc Am J 63:1703–1708

    CAS  Google Scholar 

  • Bazin H, Bouchu A, Descotes G, Petit-Ramel M (1995) Comparison of calcium complexation of some carboxylic acids derived from D-glucose and D-fructuose. Can J Chem 73:1338–1347

    CAS  Google Scholar 

  • Bohn H, McNeal BL, O’connor G (1985) Soil chemistry. Wiley, New York

    Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    CAS  Google Scholar 

  • Bolan NS, Naidu R, Mahimairaja S, Baskaran S (1994) Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol Fertil Soils 18:311–319

    CAS  Google Scholar 

  • Brady NC, Weil RR (1999) The nature and properties of soils. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Buol S, Hole FD, McCraken RJ, Southard RJ (1997) Soil genesis and classification. Iowa State University Press, Ames

    Google Scholar 

  • Cabello M, Irrazabal G, Bucsinszky AM, Saparrat M, Schalamuk S (2005) Effect of an arbuscular mycorrhizal fungus, Glomus mosseae, and a rock-phosphate-solubilizing fungus, Penicillium thomii, on Mentha piperita growth in a soilless medium. J Basic Microbiol 45:182–289

    PubMed  Google Scholar 

  • Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72:1258–1266

    CAS  PubMed  Google Scholar 

  • Canbolat MC, Bilen S, Cakmakci R, Sahin F, Aydin A (2006) Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties, and rhizosphere microflora. Biol Fertil Soils 42:350–357

    CAS  Google Scholar 

  • Cardoso I, Boddington CL, Janssen BH, Oenema O, Kuyper T (2006) Differential acces to phosphorus pool of an Oxisol by mycorrhizal and non-mycorrhizal maize. Commun Soil Sci Plant Anal 37:1537–1552

    CAS  Google Scholar 

  • Corrales I, Amenos M, Poschenrieder C, Barcelo J (2007) Phosphorus efficiency and root exhudates in two contrasting tropical maize varieties. J Plant Nutr 30:887–900

    CAS  Google Scholar 

  • Cross AF, Schlesinger WH (1995) A literature review and evaluation of the Hedley fractionation: application to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64:197–214

    CAS  Google Scholar 

  • De la Fuente JM, Herrera L (1999) Advances in the understanding of aluminum toxicity and the development of aluminum tolerant transgenic plants. Adv Agron 66:103–121

    Google Scholar 

  • Delhaize E, Hebb DM, Ryan PR (2001) Expression of a Pseudomonas aerugionosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol 125:2059–2067

    CAS  PubMed  Google Scholar 

  • Di-Simine CD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fertil Soils 28:87–94

    CAS  Google Scholar 

  • Do Carmo Harta M, Torrent J (2007) Phosphorus desorption kinetics in relation to phosphorus forms and sorption properties of Portuguese acid soils. Soil Sci 172:631–638

    Google Scholar 

  • Duponnois R, Kisa M, Plenchette C (2006) Phosphate-solubilizing potential of the nematophagous fungus Arthrobotrys oligospora. J Plant Nutr Soil Sci 169:280–282

    CAS  Google Scholar 

  • El-Azouni IM (2008) Effect of phosphate solubilizing fungi on growth and nutrient uptake of soybean (Glycine max L.) plants. J Appl Sci Res 4(6):592–598

    CAS  Google Scholar 

  • Engelstad OP, Terman GL (1980) Agronomic effectiveness of phosphate fertilizers. In: Khasawneh FE, Sample E, Kamprath E (eds) The role of phosphorus in agriculture. Soil Science Society of America, Madison, WI, pp 311–332

    Google Scholar 

  • Finlayson G, Roth R, Bubois L (1972) Calcium oxalate solubility studies in urinary calculi. In: International Symposium on Renal Stone Research Madrid, Spain, pp 1–7

    Google Scholar 

  • Fox RL (1979) Comparative responses of field grown crops to phosphate concentrations in soil solutions. In: Munsell H, Staples R (eds) Stress physiology in crop plants. Wiley, New York, pp 81–106

    Google Scholar 

  • Fox RL, Kamprath E (1970) Phosphate sorption isotherms for evaluating phosphorus requirements of soils. Soil Sci Soc Am Proc 34:902–907

    CAS  Google Scholar 

  • Fransson AM, Valeur I, Wallander H (2004) The wood-decaying fungus Hygrophoropsis aurantica increases P availability in acid forest humus soil, while N addition hampers this effect. Soil Biol Biochem 36:1699–1705

    CAS  Google Scholar 

  • Gaur A, Rana J, Jalali B, Chand H (1990) Role of VA mycorrhizae, phosphate solubilizing bacteria and their interactions on growth and uptake of nutrients by wheat crops. In: Trends in mycorrhizal research. Proceedings of the National Conference on Mycorrhizae, Hisar, India, pp 105–106

    Google Scholar 

  • Gleddie SC (1993) Response of pea and lentil to inoculation with the phosphate-solubilizing fungus Penicillium bilaii (Provide). In: Proceedings of the Soils and Crops Workshops. Saskatoon, Saskatchewan, pp 47–52

    Google Scholar 

  • Goenadi DH (1995) Suitability of selected mixtures of clay minerals with humic substances as carrier of phosphates-solubilizing microbes. Menara Perkebunan 63:102–113

    Google Scholar 

  • Goenadi DH, Saraswati R, Nganro NN (1995) Nutrient-solubilizing and aggregate stabilizing microbes isolates from selected humic tropical soils. Menara Perkebunan 63:60–66

    Google Scholar 

  • Gururaj R, Mallikarjunaiah R (1995) Interactions among Azotobacter chroococcum, Penicillium glaucum and Glomus fasciculatum and their effect on the growth and yield of sunflower. Helia 18(23):73–84

    Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    CAS  Google Scholar 

  • Habte M, Manjunath A (1991) Categories of vesicular-arbuscular mycorrhizal dependency of host species. Mycorrhiza 1:3–12

    Google Scholar 

  • Habte M, Osorio NW (2001) Arbuscular mycorrhizas: producing and applying arbuscular mycorrhizal inoculum. University of Hawaii, Honolulu

    Google Scholar 

  • Hameeda B, Kumar YH, Rupela OP, Kumar GN, Reddy G (2006) Effect of carbon substrates on rock phosphate solubilization by bacteria from compost and macrofauna. Curr Microbiol 53:298–302

    CAS  PubMed  Google Scholar 

  • Hamel C (2004) Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can J Soil Sci 84:383–395

    CAS  Google Scholar 

  • Hammond L, Leon L (1992) Evaluation of the North Carolina natural phosphate as a phosphoric fertilizer. Suelos Ecuat 22:143–150

    Google Scholar 

  • Havlin J, Beaton J, Tisdale SL, Nelson W (1999) Soil fertility and fertilizers: an introduction to nutrient management. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • He ZL, Zhu J (1997) Transformation and bioavailability of specifically sorbed phosphate on variable-charge mineral soils. Biol Fertil Soils 25:175–181

    Google Scholar 

  • He ZL, Zhu J (1998) Microbial utilization and transformation of phosphate adsorbed by variable charge minerals. Soil Biol Biochem 30:917–923

    CAS  Google Scholar 

  • Hetrick BAD (1991) Mycorrhizas and root architecture. Experentia 47:355–362

    Google Scholar 

  • Holdford ICR (1997) Soil phosphorus: its measurement, and its uptake by plants. Aust J Soil Res 35:227–239

    Google Scholar 

  • Hue NV (1991) Effects of organic acids/anions on P sorption and phytoavailability in soils with different mineralogies. Soil Sci 152:463–471

    CAS  Google Scholar 

  • Hue NV, Craddock GR, Adams F (1986) Effects of organic acids on aluminum toxicity in subsoils. Soil Sci Soc Am J 50:28–34

    CAS  Google Scholar 

  • IIlmer P, Barbato A, Schinner F (1995) Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol Biochem 27:265–270

    Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol Biochem 27:257–263

    CAS  Google Scholar 

  • Jackman JM, Jones RC, Yost RS, Babcock CJ (1997) Rietveld estimates of mineral percentages to predict phosphate sorption by selected Hawaiian soils. Soil Sci Soc Am J 61:618–625

    CAS  Google Scholar 

  • Jacobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytol 120:371–380

    Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Jones RC (1981) X-ray diffraction line profile analysis vs. phosphorus sorption by 11 Puerto Rican soils. Soil Sci Soc Am J 45:818–825

    CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, Van Hees PAW (2003) Organic acid behavior in soils–misconceptions and knowledge gaps. Plant Soil 248:31–41

    CAS  Google Scholar 

  • Juo A, Ellis B (1968) Chemical and physical properties of iron and aluminum phosphate and their relation to phosphorus availability. Soil Sci Soc Am Proc 32:216–221

    CAS  Google Scholar 

  • Juo ASR, Fox RL (1977) Phosphate sorption characteristics of some bench-mark soils of West Africa. Soil Sci 124:370–376

    CAS  Google Scholar 

  • Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with plant growth-promoting rhizobacteria and a arbuscular mycorrhizal fungus on the perfomance of wheat. Turk J Agr For 31:355–362

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Kim KY, McDonald GA, Jordan D (1997) Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fertil Soils 24:347–352

    CAS  Google Scholar 

  • Kim KY, McDonald GA, Jordan D (1998a) Effect of phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998b) Enterobacter agglomerans, phosphate solubilizing bacteria and microbal activity in soil. Effect of carbon sources. Soil Biol Biochem 30:995–1003

    CAS  Google Scholar 

  • Kirk GJD, Santos EE, Findenegg GR (1999) Phosphate solubilization by organic anion excretion from rice (Orytza sativa L.) growing in aerobic soil. Plant Soil 211:11–18

    CAS  Google Scholar 

  • Kopler J, Lifshitz R, Schroth M (1988) Pseudomonas inoculants to benefit plant production. ISI Atlas Sci Anim Plant Sci 1:60–64

    Google Scholar 

  • Kucey RMN (1983) Phosphate solubilising bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63:671–678

    CAS  Google Scholar 

  • Kucey RMN (1987) Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus solubilising Penicillium bilaii strain and with vesicular-asbuscular mycorrhizal fungi. Appl Environ Microbiol 53:2699–2703

    CAS  PubMed  Google Scholar 

  • Kucey RMN (1988) Effect of Penicillium bilaii on the solubility and uptake of P and micronutrients from soil by wheat. Can J Soil Sci 68:261–270

    CAS  Google Scholar 

  • Kucey RMN, Janzen HH, Leggett ME (1989) Microbial mediated increases in plant available phosphorus. Adv Agron 42:199–228

    CAS  Google Scholar 

  • Le Bayon RC, Weisskopf L, Martinoia E, Jansa J, Frossard E, Keller F, Follmi KB, Gobat JM (2006) Soil phosphorus uptake by continuously cropped Lupinus albus: a new microcosm design. Plant Soil 283:309–321

    Google Scholar 

  • Li X, Ecckhard G, Marschner H (1991) Phosphorus depletion and pH decrease at the root-soil and hypha-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol 119:397–404

    CAS  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interaction with the rhizosphere microflora: The mycorhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Lindsay WL (2001) Chemical equilibria in soils. Blackburn, Caldwell, New Jersey

    Google Scholar 

  • Louw HA, Webley DM (1959) The solubilization of insoluble phosphates. V. The action of some organic acids on iron and aluminium phosphates. NZ J Sci 2:215–218

    Google Scholar 

  • Lynch JP, Ho MD (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil 269:45–56

    CAS  Google Scholar 

  • Manjunath A, Hue NV, Habte M (1989) Response of Leucaena leucocephala to vesicular-arbuscular mycorrhizal colonization and rock phosphate fertilization in an Oxisol. Plant Soil 114:127–133

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Marschner P, Solaiman Z, Rengel Z (2006) Rhizosphere properties of Poacea genotypes under P-limiting conditions. Plant Soil 283:11–24

    CAS  Google Scholar 

  • Mattingly GEG (1975) Labile phosphate in soils. Soil Sci 119:369–375

    CAS  Google Scholar 

  • McCully M (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol Plant Mol Biol 50:695–718

    CAS  PubMed  Google Scholar 

  • Memon KS (1996) Soil and fertilizer phosphorus. In: Bashir E, Bantel R (eds) Soil science. National Book Foundation, Islamabad, pp 291–314

    Google Scholar 

  • Miyasaka SC, Habte M (2001) Plant mechanisms and mycorrhizal symbioses to increase phosphorus uptake efficiency. Commun Soil Sci Plant Anal 32:1101–1147

    CAS  Google Scholar 

  • Miyasaka S, Buta JG, Howell RK, Foy CD (1991) Mechanisms of aluminum tolerance in snapbeans. Plant Physiol 96:737–743

    CAS  PubMed  Google Scholar 

  • Mohod S, Gupta DN, Chavan AS (1991) Effects of P solubilizing organims on yield and N uptake by rice. J Maharashtra Agric Univ 16:229–231

    CAS  Google Scholar 

  • Msolla MM, Semoka JMR, Borggaard OK (2005) Hard Minjingu phosphate rock. An alternative P source for maize production on acid soils in Tanzania. Nutr Cyc Agroecosyst 72:299–308

    CAS  Google Scholar 

  • Msolla MM, Semoka JMR, Szilas C, Borggaard OK (2007) Crop (maize) response to direct application of local phosphate rock on selected acidic soils of Tanzania. Commun Soil Sci Plant Anal 38:93–106

    CAS  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    CAS  Google Scholar 

  • Nye PH, Tinker PB (1977) Solute movement in the soil-root system. Blackwell, Oxford

    Google Scholar 

  • Ojo OD, Kintomo AA, Akinride EA, Akoroda MO (2007) Comparative effect of phosphorus sources for grain amaranth production. Commun Soil Sci Plant Anal 38:35–55

    CAS  Google Scholar 

  • Omar SA (1998) The role of rock-phosphate-solubilizing fungi and vesicular-arbuscular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J Microbiol Biotechnol 14:211–218

    CAS  Google Scholar 

  • Osorio NW (2008) Effectiveness of microbial solubilization of phosphate in enhancing plant phosphate uptake in tropical soils and assessment of the mechanisms of solubilization. Ph.D. dissertation, University of Hawaii, Honolulu

    Google Scholar 

  • Osorio NW, Habte M (2001) Synergistic influence of an arbuscular mycorrhizal fungus and P solubilizing fungus on growth and plant P uptake of Leucaena leucocephala in an Oxisol. Arid Land Res Manage 15:263–274

    CAS  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate solubilizing microorganism and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-apline location in the Indian Central Himalaya. Curr Microbiol 53:102–107

    CAS  PubMed  Google Scholar 

  • Parfitt RL (1989) Phosphate reactions with natural allophane, ferrihydrite and goethite. J Soil Sci 40:359–369

    CAS  Google Scholar 

  • Paul NB, Rao WVBS (1971) Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes. Plant Soil 35:127–132

    Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velasquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorrhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    CAS  Google Scholar 

  • Pikovskaia RI (1948) Mobilization of phosphates in soil in conection with the vital activities of some microbial species. Mikrobiologie 17:362–370

    Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth response of several plant species to mycorrhiza in a soil of moderate P fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70:191–209

    Google Scholar 

  • Prathibha CK, Alagawadi A, Sreenivasa M (1995) Establishment of inoculated organisms in rhizosphere and their influence on nutrient uptake and yield of cotton. J Agric Sci 8:22–27

    Google Scholar 

  • Prescott L, Harley J, Klein DA (1999) Microbiology. McGraw-Hill, Boston

    Google Scholar 

  • Pypers P, Delrue J, Diels J, Smolders E, Merckx R (2006) Phosphorus intensity determines short term P uptake by pigeon pea (Cajanus cajan L.) grown in soils with different P buffereing capacity. Plant Soil 284:217–227

    CAS  Google Scholar 

  • Radersma S, Grierson P (2004) Phosphorus mobilization in agroforestry: organic anions, phosphatase activity and phosphorus fractions in the rhizophere. Plant Soil 259:209–219

    CAS  Google Scholar 

  • Rahman MK, Parsons JW (1997) Effects of inoculation with Glomus mosseae, Azorhizobium caulinodans and rock phosphate on the growth of and nitrogen and phosphorus accumulation in Sesbania rostrata. Biol Fertil Soils 25:47–52

    CAS  Google Scholar 

  • Rambelli A (1973) The rhizosphere of mycorrhyzae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhyzae. Their ecology and physiology. Academic, London, pp 299–343

    Google Scholar 

  • Randhawa P, Condron LM, Di HJ, Sinaj S, McLenaghen RD (2006) Phosphorus availability in soils amended with different phosphate fertilizers. Commun Soil Sci Plant Anal 37:25–39

    CAS  Google Scholar 

  • Rao S (1992) Biofertilizers in agriculture. A. A. Balkema, Rotterdam

    Google Scholar 

  • Rashid M, Khalil S, Ayub N, Alam S, Latif F (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak J Biol Sci 7(2):187–196

    Google Scholar 

  • Redding MR, Shatte T, Bell K (2006) Soil-sorption-desorption of phosphorus from piggery effluent compared with inorganic sources. Eur J Soil Sci 57:134–146

    CAS  Google Scholar 

  • Reddy DD (2007) Phosphorus solubilization from low-grade rock phosphates in the presence of decomposing soybean leaf litter. Commun Soil Sci Plant Anal 38:283–291

    CAS  Google Scholar 

  • Reddy MS, Kumar S, Babita K, Reddy MS (2002) Biosolubilization of poorly soluble rock phosphates by Aspergillus tubigensis and Aspergillus niger. Bioresour Technol 84:187–189

    CAS  PubMed  Google Scholar 

  • Reyes I, Valery A, Valduz Z (2006) Phosphate-solubilizing microrganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. Plant Soil 287:69–75

    CAS  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    CAS  Google Scholar 

  • Roos W, Luckner M (1984) Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. J Gen Microbiol 130:1007–1014

    CAS  Google Scholar 

  • Rose RE (1957) Techniques of determining the effect of microorganisms on insoluble inorganic phosphates. NZ J Sci Technol 38:773–780

    Google Scholar 

  • Salih HM, Yahya AI, Abdul-Rahem AM, Munam BH (1989) Availability of phosphorus in a calcareous soil treated with rock phosphate or superphosphate as affected by phosphate-dissolving fungi. Plant Soil 120:181–185

    CAS  Google Scholar 

  • Sanchez P, Logan T (1992) Myths and science about the chemistry and fertility of soils in the tropics. In: Lal R, Sanchez P (eds) Myths and science of soils of the tropics. Soil Science Society of America, Madison, WI, pp 35–46

    Google Scholar 

  • Sanchez P, Uehara G (1980) Management considerations for acid soils with high phosphorus fixation capacity. In: Khasawneh FE (ed) The role of phosphorus in agriculture. Soil Science Society of America, Madison, WI, pp 471–514

    Google Scholar 

  • Sato S, Comerford N (2006) Organic anions and phosphorus desorption and bioavailability in a humid Brazilian Ultisol. Soil Sci 171:695–705

    CAS  Google Scholar 

  • Schachtman DP, Reid R, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    CAS  PubMed  Google Scholar 

  • Schwertmann U, Herbillon AJ (1992) Some aspects of fertility associated with the mineralogy of highly weathered tropical soils. In: Lal R, Sanchez P (eds) Myths and science of soils of the Tropics. Soil Science Society of America, Madison, WI, pp 47–60

    Google Scholar 

  • Shabayey VP, Smolin VY, Mudrik VA (1996) Nitrogen fixation and CO2 exchange in soybeans inoculated with mixed cultures of different microorganisms. Biol Fertil Soils 23:425–430

    Google Scholar 

  • Shoji S, Nanzyo M, Dahlgren RA (1993) Volcanic ash soils-genesis, properties, and utilization. Elsevier, Amsterdam

    Google Scholar 

  • Shrivastava M, Bhujbal BM, D’Souza SF (2007) Agronomic efficiency of Indian rock phosphate in acidic soils employing radiotracer A-value technique. Commun Soil Sci Plant Anal 38:461–471

    CAS  Google Scholar 

  • Singh S, Kapoor KK (1999) Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol Fertil Soils 28:139–144

    CAS  Google Scholar 

  • Singh HP, Singh TA (1993) The interaction of rock phosphate, Bradyrhizobium, vesicular arbuscular mycorrhizae, and phosphate-solubilising microbes on soybean grown in a sub-Himalayan Mollisol. Mycorrhiza 4:37–43

    Google Scholar 

  • Singh V, Dhillon NS, Brar BS (2006) Effect of incorporation of crop residues and organic manures on adsorption/desorption and bioavailability of phosphate. Nutr Cyc Agroecosyst 76:95–108

    Google Scholar 

  • Smith FW (2002) The phosphate uptake mechanism. Plant Soil 245:105–114

    CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Smith FW, Mudge SR, Rae AL, Glassop D (2003) Phosphate transport in plants. Plant Soil 248:71–83

    CAS  Google Scholar 

  • Snoeyink VL, Jenkins D (1980) Water chemistry. Wiley, New York

    Google Scholar 

  • Sperber JI (1957) Solution of mineral phosphates by soil bacteria. Nature 180:994

    CAS  PubMed  Google Scholar 

  • Sperber JI (1958) Solution of apatite by soil microorganisms producing organic acids. Aust J Agric Res 9:782–787

    CAS  Google Scholar 

  • Sreenivasa M, Krishnaraj M (1992) Synergistic interaction between VA mycorrhizal fungi and a phosphate solubilizing bacterium in chili. Zentralbl Mikrobiol 147:126–130

    Google Scholar 

  • Stevenson FJ (1986) Cycles of soil. Wiley, New York

    Google Scholar 

  • Stumm W, Morgan JJ (1995) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New York

    Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19

    Google Scholar 

  • Sylvia D (1999) Mycorrhizal symbioses. In: Sylvia DJ, Fuhrmann J, Hartel P, Zuberer D (eds) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River, NJ, pp 408–426

    Google Scholar 

  • Taylor AW, Gurney EL (1964) Solubility of variscite. Soil Sci 98:9–13

    CAS  Google Scholar 

  • Tinker PB (1980) Role of rhizosphere microorganisms in phosphorus uptake by plants. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. Soil Science Society of America, Madison, WI, pp 617–654

    Google Scholar 

  • Toro M, Azcon R, Herrera R (1996) Effects on yield and nutrition of mycorrhizal and nodulated Pueraria phaseolides exerted by P-solubilizing rhizobacteria. Biol Fertil Soils 21:23–29

    Google Scholar 

  • Toro M, Azcon R, Barea JM (1998) The use of isotopic dilution techniques to evaluate the interactive effects of rhizobium genotypes, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol 138:265–273

    CAS  Google Scholar 

  • Trolove SN, Hedley MJ, Kirk GJD, Bolan NS, Loganathan P (2003) Progress in selected areas of rhizosphere research on P acquisition. Aust J Soil Res 41:471–499

    Google Scholar 

  • Veith JA, Sposito G (1977) Reactions of aluminosilicates, aluminum hydrous oxides, and aluminum oxide with o-phosphate: the formation of x-ray amorphous analog of variscite and montebrasite. Soil Sci Soc Am J 41:870–876

    CAS  Google Scholar 

  • Venkateswarlu B, Rao AV, Raina P (1984) Evaluation of phosphorus solubilization by microorganisms isolated from Aridisols. J Indian Soc Soil Sci 32:273–277

    CAS  Google Scholar 

  • Vyas P, Rahi P, Chauhan A, Gulati A (2007) Phosphate solubilization potential and stress tolerance of Eupenicilium parvum from tea soil. Mycol Res 111:931–938

    CAS  PubMed  Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004a) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43

    CAS  Google Scholar 

  • Wakelin SA, Warren RA, Ryder MH (2004b) Effect of soil properties on growth promotion of wheat by Penicillium radicum. Aust J Soil Res 42:897–904

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with nitrogen fixing and phosphate-solubilizing rhizobacteria on the perfomance of field grwon chickpea. J Plant Nutr 27:599–610

    Google Scholar 

  • Welch S, Taunton AE, Banfiled JF (2002) Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiol J 19:343–367

    CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    CAS  Google Scholar 

  • Whitelaw MA, Harden TJ, Bender GL (1997) Plant growth promotion of wheat inoculated with Penicillium radicum sp. nov. Aust J Soil Res 35:291–300

    Google Scholar 

  • Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Biol Fertil Soils 35:471–478

    CAS  Google Scholar 

  • Young R, Davies C (1980) Phosphate fertilizers and process technology. In: Khasawneh FE, Sample E, Kamprath E (eds) The role of phosphorus in agriculture. Soil Science Society of America, Madison, WI, pp 195–226

    Google Scholar 

  • Young CC, Chen CL, Chao CC (1990) Effect of Rhizobium, vesicular-arbuscular mycorrhiza, and phosphate solubilizing bacteria on yield and mineral phosphorus uptake of crops in subtropical-tropical. In: 14th International Congress of Soil Science Transactions, vol. 3. International Society of Soil Science, Kyoto, Japan, pp 55–60

    Google Scholar 

  • Yusdar H, Anuar AR, Hanafi MM, Azifah H (2007) Analysis of phosphate rock dissolution determining factors using principal component analysis in some acid Indonesian soils. Commun Soil Sci Plant Anal 38:273–282

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Walter Osorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Osorio, N.W., Habte, M. (2009). Strategies for Utilizing Arbuscular Mycorrhizal Fungi and Phosphate-Solubilizing Microorganisms for Enhanced Phosphate Uptake and Growth of Plants in the Soils of the Tropics. In: Khan, M., Zaidi, A., Musarrat, J. (eds) Microbial Strategies for Crop Improvement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01979-1_16

Download citation

Publish with us

Policies and ethics