Advertisement

Density Functional Theory Study of Ag-Cluster/CO Interactions

  • Paulo H. Acioli
  • Narin Ratanavade
  • Michael R. Cline
  • Sudha Srinivas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5545)

Abstract

The interactions between carbon monoxide and small clusters of silver atoms are examined. Optimal geometries of the cluster-molecules complexes, i.e. silver cluster - carbon monoxide molecule, are obtained for different sizes of silver clusters and different numbers of carbon monoxide molecules. This analysis is performed in terms of different binding energy of these complexes and analysis of the frontier orbitals of the complex compared to those of its constituents. The silver atom and the dimer (Ag2) bond up to three carbon monoxide molecules per Ag atom, while the larger clusters appear to saturate at two CO’s per Ag atom. Analysis of the binding energy of each CO molecule to the cluster reveals that the general trend is a decrease with the number of CO molecules, with the exception of Ag where the second CO molecule is the strongest bound. A careful analysis of the frontier orbitals shows that the bent structures of AgCO and Ag2CO are a result from the interaction of the highest occupied orbital of Ag (5s) and Ag2 (σ) with the lowest unoccupied orbital of CO (π *). The same bent structure also appears in the bonding of CO to some of the atoms in the larger clusters. Another general trend is that the CO molecules have a tendency to bond atop of an atom rather than on bridge or face sites. These results can help us elucidate the catalytic properties of small silver clusters at the atomic level.

Keywords

Binding Energy Gold Cluster Silver Atom Silver Cluster Point Group Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ervin, K.M.: Metal-ligand interactions: gas-phase transition metal cluster carbonyls. Int. Rev. Phys. Chem. 20, 127–164 (2001); Bernhardt, T. M.: Gas-phase kinetics and catalytic reactions of small silver and gold clusters. Int. Jour. Mass. Spec. 243, 1-29 (2005); and references therein CrossRefGoogle Scholar
  2. 2.
    Valden, M., Lai, X., Goodman, D.W.: Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 281, 1647–1650 (1998)CrossRefGoogle Scholar
  3. 3.
    Yoon, B., Häkkinen, H., Landman, U., Wörz, A., Antonietti, J.-M., Abbet, S., Judai, K., Heiz, U.: Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO. Science 307, 403–407 (2005)CrossRefGoogle Scholar
  4. 4.
    Carter, E.A., Goddard III, W.A.: Chemisorption of oxygen, chlorine, hydrogen, hydroxide, and ethylene on silver clusters: A model for the olefin epoxidation reaction. Surf. Sci. 209, 243–289 (1989)CrossRefGoogle Scholar
  5. 5.
    Boussard, P.J.E., Seigbahn, P.E.M., Svensson, M.: The interaction of ammonia, carbonyl, ethylene and water with the copper and silver dimers. Chem. Phys. Lett. 231, 337–344 (1994)CrossRefGoogle Scholar
  6. 6.
    Zhou, J., Li, Z.-H., Wang, W.-N., Fan, K.-N.: Density functional study of the interaction of carbon monoxide with small neutral and charged silver clusters. J. Phys. Chem. A 110, 7167–7172 (2006)CrossRefGoogle Scholar
  7. 7.
    Jiang, L., Xu, Q.: Infrared Spectra of the (AgCO)2 and AgnCO (n = 2-4) Molecules in Rare-Gas Matrices. J. Phys. Chem. A 110, 11488–11493 (2006)CrossRefGoogle Scholar
  8. 8.
    Giordano, L., Vitto, A.D., Pachionni, F., Ferrari, A.M.: CO adsorption on Rh, Pd and Ag atoms deposited on the MgO surface: a comparative ab initio study. Surf. Sci. 540, 63–75 (2003)CrossRefGoogle Scholar
  9. 9.
    Bernhardt, T.M., Socaciu-Siebert, L.D., Hagen, J., Wöste, L.: Size and composition dependence in CO oxidation reaction on small free gold, silver, and binary silver-gold cluster anions. Appl. Catal. A 291, 170–178 (2005)CrossRefGoogle Scholar
  10. 10.
    Hagen, J., Socaciu-Siebert, L.D., Le Roux, J., Popolan, D., Vajda, S., Bernhardt, T.M., Wöste, L.: Charge transfer initiated nitroxyl chemistry on free silver clusters Ag\(_{2-5}^{-}\): Size effects and magic complexes. Intl. J. Mass. Spectr. 261, 152–158 (2007)CrossRefGoogle Scholar
  11. 11.
    Bonacic-Koutecky, V., Cespiva, L., Fantucci, P., Koutecky, J.: Effective core potential-configuration interaction study of electronic structure and geometry of small neutral and cationic Agn clusters: Predictions and interpretation of measured properties. J. Chem. Phys. 98, 7981–7994 (1993)CrossRefGoogle Scholar
  12. 12.
    Kaplan, I.G., Santamaria, R., Novaro, O.: Theoretical-study of the geometric structures and energetic properties of anionic clusters - Ag\(_n^{-}\) (n=2 to 6). Int. J. Quant. Chem. Symp. 27, 743–753 (1993)CrossRefGoogle Scholar
  13. 13.
    Poteau, R., Heully, J.-L., Spiegelmann, F.: Structure, stability, and vibrational properties of small silver cluster. Z. Phys. D. 40, 479–482 (1997)CrossRefGoogle Scholar
  14. 14.
    Srinivas, S., Salian, U., Jellinek, J.: Theoretical Investigations of Silver Clusters and Silver-Ligand Systems. In: Russo, M., Salahub, D.R. (eds.) Metal-ligand interactions in chemistry, physics, and Biology. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  15. 15.
    Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 38, 3098–3100 (1988)CrossRefGoogle Scholar
  16. 16.
    Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation-energy. Phys. Rev. B 45, 13244–13249 (1992)CrossRefGoogle Scholar
  17. 17.
    Frisch, M.J., et al.: Gaussian 2003. Gaussian, Inc., Wallingford (2004)Google Scholar
  18. 18.
    Andrae, D., Haussermann, U., Dolg, M., Stoll, H., Preuss, H.: Energy-adjusted abinitio pseudopotentials for the 2nd and 3rd row transition-elements. Theor. Chim. Acta 77, 123–141 (1990)CrossRefGoogle Scholar
  19. 19.
    Godbout, N., Salahub, D.R., Andzelm, J., Wimmer, E.: Optimization of Gaussian-type basis-sets for local spin-density functional calculations. 1. boron through neon, optimization technique and validation. Can. J. Chem. 70, 560–571 (1992); Sosa, C., Andzelm, J., Elkin, B. C., Wimmer, E., Dobbs, K. D., Dixon, D. A.: A local density functional-study of the structure and vibrational frequencies of molecular transition-metal compounds. J. Phys. Chem. 96 , 6630–6636 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Paulo H. Acioli
    • 1
  • Narin Ratanavade
    • 1
  • Michael R. Cline
    • 1
  • Sudha Srinivas
    • 1
  1. 1.Department of Physics and AstronomyNortheastern Illinois UniversityChicagoUSA

Personalised recommendations