Skip to main content

A Massively Parallel Architecture for Bioinformatics

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 5544)


Today’s general purpose computers lack in meeting the requirements on computing performance for standard applications in bioinformatics like DNA sequence alignment, error correction for assembly, or TFBS finding. The size of DNA sequence databases doubles twice a year. On the other hand the advance in computing performance per unit cost only doubles every 2 years. Hence, ingenious approaches have been developed for putting this discrepancy in perspective by use of special purpose computing architectures like ASICs, GPUs, multicore CPUs or CPU Clusters. These approaches suffer either from being too application specific (ASIC and GPU) or too general (CPU-Cluster and multicore CPUs). An alternative is the FPGA, which outperforms the solutions mentioned above in case of bioinformatic applications with respect to cost and power efficiency, flexibility and communication bandwidths. For making maximal use of the advantages, a new massively parallel architecture consisting of low-cost FPGAs is presented.


  • Application Program Interface
  • Local Area Network
  • Parallel Architecture
  • Data Encryption Standard
  • FPGA Chip


  1. DeHon, A.: The Density Advantage of Configurable Computing. IEEE Computer Magazine 33(4), 41–49 (2000)

    CrossRef  Google Scholar 

  2. Hennessy, J.L., Patterson, D.: Computer Architecture: A Quantitative Approach (1995)

    Google Scholar 

  3. Guüneysu, T., Kasper, T., Novotny, M., Paar, C., Rupp, A.: Cryptanalysis with COPACOBANA. Transactions on Computers 57, 1498–1513 (2008)

    MathSciNet  CrossRef  Google Scholar 

  4. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: COPACOBANA - A Cost-Optimized Special-Purpose Hardware for Code-Breaking. In: IEEE Symposium on Field-Programmable Custom Computing Machines - FCCM 2006, Napa, California, April 24-26 (2006)

    Google Scholar 

  5. Montrose, M.I.: EMC and the Printed Circuit Board. IEEE Press, New York (1999)

    Google Scholar 

  6. Montrose, M.I.: Printed Circuit Board Design Techniques for EMC Compliance, 2nd edn. IEEE Press, New York (2000)

    CrossRef  Google Scholar 

  7. Hernandez, et al.: De novo bacterial genome sequencing: Millions of very short reads assembled on a desktop computer. Genome Res. 18(5), 802–809 (2008)

    CrossRef  Google Scholar 

  8. Chaisson, P.: Short read fragment assembly of bacterial genomes. Genome Research (December 2007)

    Google Scholar 

  9. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197 (1981)

    CrossRef  Google Scholar 

  10. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970)

    CrossRef  Google Scholar 

  11. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic Local Alignment Search Tool. Journal of Molecular Biology 215(3), 403–410 (1990)

    CrossRef  Google Scholar 

  12. Bailey, T.L., Elkan, C.: Unsupervised Learning of Multiple Motifs in Biopolymers Using Expectation Maximization. Techn. Report, Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA (1993)

    Google Scholar 

  13. Buhler, J., Tompa, M.: Finding Motifs Using Random Projections. Journal of Computational Biology 9(2), 225–242 (2002)

    CrossRef  Google Scholar 

  14. Schroeder, J., Schimmler, M., Tischer, K., Schroeder, H.: BMA Boolean Matrices as Model for Motif Kernels. In: 2008 International Conference on Bioinformatics, Computational Biology, Genomics and Chemoinformatics (2008)

    Google Scholar 

  15. Schroeder, J., Wienbrandt, L., Pfeiffer, G., Schimmler, M.: Massively Parallelized DNA Motif Search on the Reconfigurable Hardware Platform COPACOBANA. In: Chetty, M., Ngom, A., Ahmad, S. (eds.) PRIB 2008. LNCS (LNBI), vol. 5265, pp. 436–447. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  16. Blas et al.: The UCSC Kestrel Parallel Processor. IEEE Transactions on Parallel and Distributed Systems 16(1) (January 2005)

    Google Scholar 

  17. Manavski, S.A., Valle, G.: CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment. In: BMC Bioinformatics 2008, vol. 9(suppl. 2), p. 10, March 26 (2008)

    Google Scholar 

  18. Oliver, T.F., Schmidt, B., et al.: Multiple Sequence Alignment on an FPGA. ICPADS (2), 326–330 (2005)

    Google Scholar 

  19. Oliver, T., Schmidt, B., Maskell, D.: Reconfigurable Architectures for Bio-sequence Database Scanning on FPGAs. IEEE Transactions on Circuits and Systems II 52(12), 851–855 (2005)

    CrossRef  Google Scholar 

  20. Oliver, T., Schmidt, B., Nathan, D., Clemens, R., Maskell, D.: Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW. Bioinformatics 21(16), 3431–3432 (2005)

    CrossRef  Google Scholar 

  21. Oliver, T., Leow, Y.Y., Schmidt, B.: Integrating FPGA Acceleration into HMMer. Parallel Computing 34(11), 681–691 (2008)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pfeiffer, G., Baumgart, S., Schröder, J., Schimmler, M. (2009). A Massively Parallel Architecture for Bioinformatics. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds) Computational Science – ICCS 2009. Lecture Notes in Computer Science, vol 5544. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01969-2

  • Online ISBN: 978-3-642-01970-8

  • eBook Packages: Computer ScienceComputer Science (R0)