Skip to main content

Siamese Combinatorial Objects via Computer Algebra Experimentation

  • Chapter
  • First Online:

Summary

Following Kharaghani and Torabi [On a decomposition of complete graphs, Graphs Comb., 19 (2003), 519–526], we introduce new concepts of Siamese color graph, Siamese association scheme and Siamese Steiner design. With the aid of a computer, we determine all Siamese objects on 15 points, as well as hundreds on 40 points. As a generalization of accumulated observations, an infinite series of Siamese association schemes related to certain imprimitive actions of the groups PSL(2,q 2) is outlined. Special attention is paid to the spirit of computer-aided activity, namely to algorithms, technical data, successful ad hoc tricks, and computer-free interpretations of obtained results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Bannai and T. Ito, Algebraic Combinatorics I. Association Schemes, Benjamin/Cummings, Menlo Park, 1984.

    MATH  Google Scholar 

  2. T. Beth, D. Jungnickel, and H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  3. A. Betten, A. Kerber, R. Laue, and A. Wasserman, Simple 8-designs with small parameters, Designs Codes Cryptogr., 15 (1998), 5–27.

    Article  MATH  Google Scholar 

  4. A. Betten, M. Klin, R. Laue, and C. Pech, A Computer Approach to the Enumeration of Block Designs which are Invariant with Respect to a Prescribed Permutation Group, Preprint MATH-AL-13-1997 Technische Univesitität Dresden, 1–51, supplement 52–74, 1997.

    Google Scholar 

  5. A. Betten, M. Klin, R. Laue, and A. Wasserman, Graphical t-designs via Kramer-Mesner matrices, Discrete Math., 197/198 (1999), 83–109.

    Google Scholar 

  6. A. Betten, R. Laue, and A. Wasserman, DISCRETA: A program system for the construction of t-designs with a prescribed automorphism group, University of Bayreuth, 1998, http://www.mathe2.uni-bayreuth.de/betten/DISCRETA/index.html.

  7. N. L. Biggs, Distance-regular graphs with diameter three, Ann. Discrete Math., 15 (1982), 69–80.

    MathSciNet  MATH  Google Scholar 

  8. A. E. Brouwer, http://www.win.tue.nl/~aeb/

  9. A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance Regular Graphs, Springer-Verlag, Berlin, 1989.

    MATH  Google Scholar 

  10. A. E. Brouwer, J. H. Koolen, and M. H. Klin, A root graph that is locally the line graph of the Petersen graph, Discrete Math., 264 (2003), 13–24.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Butler, The transitive groups of degree fourteen and fifteen, J. Symbol. Comput., 16 (1993), 413–422.

    Article  MATH  Google Scholar 

  12. P. J. Cameron, Permutation Groups, Cambridge University Press, Cambridge, 1999.

    Book  MATH  Google Scholar 

  13. F. N. Cole, L. D. Cummings, and H. S. White, Complete classification of the triad systems of 15 elements, Proc. Nat. Acad. Sci. USA, 3 (1919), 197–199.

    Article  Google Scholar 

  14. J. H. Conway, A. Hulpke, and J. McKay, On transitive permutation groups, London Math. Soc. J. Comput. Math., 1 (1998), 1–8.

    MathSciNet  MATH  Google Scholar 

  15. J. Degraer and K. Coolsaet, Classification of three-class association schemes using backtracking with dynamic variable ordering, Discrete Math., 300 (2005), 71–81.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. H. Dye, Maximal subgroups of symplectic groups stabilizing spreads II, Journal of London Math. Society (40), 2 (1989), 215–226.

    Article  MathSciNet  Google Scholar 

  17. I. A. Faradžev and M. H. Klin, Computer package for computations with coherent configurations, in S. M. Wat (ed.) Proceedings ISSAC-91 Bonn, pp. 219–223, Assoc. Comput. Math. Press, New York, 1991.

    Chapter  Google Scholar 

  18. I. A. Faradžev, M. H. Klin, and M. E. Muzichuk, Cellular rings and groups of automorphisms of graphs, in I. A. Faradžev, A. A. Ivanov, M. H. Klin and A. J. Woldar (eds.) Investigations in Algebraic Theory of Combinatorial Objects. Mathematics and Its Applications, Vol. 84, pp. 1–152, Kluwer Academic, Dordrecht, 1994.

    Google Scholar 

  19. R. A. Fisher, An examination of the different possible solutions of a problem in incomplete blocks, Ann. Eugenics, 10 (1940), 52–75.

    Article  MathSciNet  Google Scholar 

  20. D. E. Flesner, The geometry of subgroups of PSp 4(2n), Illinois J. Math., 19 (1975), 42–70.

    Google Scholar 

  21. P. B. Gibbons and R. Mathon, Construction methods for Bhaskar Rao and related designs, J. Austral. Math. Soc., Ser. A, 42 (1987), 5–30.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. D. Godsil and A. D. Hensel, Distance regular covers of complete graphs, J. Comb. Theory, Ser. B, 36 (1992), 205–238.

    Article  MathSciNet  Google Scholar 

  23. Ja. Ju. Gol’fand, A. V. Ivanov, and M. H. Klin, Amorphic cellular rings, in I. A. Faradžev, A. A. Ivanov, M. H. Klin, and A. J. Woldar (eds.) Investigations in Algebraic Theory of Combinatorial Objects. Mathematics and Its Applications, Vol. 84, pp. 167–186, Kluwer Academic, Dordrecht, 1994. Translated from Russian.

    Google Scholar 

  24. M. J. Grannel, T. S. Griggs, and J. P. Murphy, Equivalence classes of Steiner triple systems, Congressus Numerantum, 86 (1992), 19–25.

    Google Scholar 

  25. M. Greig and A. Rosa, Maximal arcs in Steiner systems S(2,4,v). Combinatorics 2000 (Gaeta), Discrete Math. (1–3), 267 (2003), 143–151.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. L. Gross and T. W. Tucker, Topological Graph Theory, Dover, New York, 1987.

    MATH  Google Scholar 

  27. M. Hall and J. D. Swift, Determination of Steiner triple systems of order 15, Math. Tables Other Aids Comput., 9 (1955), 146–152.

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Harary, Graph Theory, Addison–Wesley, Reading, 1969.

    Google Scholar 

  29. D. G. Higman, Coherent configurations, I. Rend. Sem. Mat. Univ. Padova, 44 (1970), 1–25.

    MathSciNet  Google Scholar 

  30. J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford, 1985.

    MATH  Google Scholar 

  31. D. R. Hughes and F. C. Piper, Design Theory, Cambridge University Press, Cambridge, 1985.

    Book  MATH  Google Scholar 

  32. Y. J. Ionin, A technique for constructing symmetric designs, Designs Codes Cryptogr., 14 (1998), 147–158.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. A. Ivanov, Construction of some new automorphic graphs using computers, in Air Physics and Applied Mathematics (Moscow) MPhTI, pp. 144–146, 1981 (in Russian).

    Google Scholar 

  34. A. Kerber and R. Laue, Group actions, double cosets and homomorphisms: Unifying concepts for the constructive theory of discrete structures, in M. Hazewinkel, A. A. Ivanov, and A. J. Woldar (eds.) Algebra and Combinatorics: Interactions and Applications. Acta Applicandae Mathematicae, Vol. 52 (1–3), pp. 63–90, Kluwer Academic, Dordrecht, 1998.

    Google Scholar 

  35. H. Kharaghani and R. Torabi, On a decomposition of complete graphs, Graphs Comb., 19 (2003), 519–526.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. H. Klin, M. Meszka, S. Reichard, A. Rosa, and E. Spence, The smallest non-rank 3 strongly regular graphs which satisfy the 4-vertex condition, Bayreuther Mathematische Schriften, 74 (2005), 145–205.

    MATH  Google Scholar 

  37. M. Ch. Klin, R. Pöschel, and K. Rosenbaum, Angewandte Algebra, Vieweg, Braunschweig, 1988.

    Google Scholar 

  38. M. H. Klin and S. Reichard, Siamese association schemes in miniature: A link between generalized quadrangles, graphs and Steiner designs. Abstracts of AMS Meeting (Bloomington), 2003, 985-05-232.

    Google Scholar 

  39. M. H. Klin, R. Reichard, and A. J. Woldar, Siamese objects and their relation to color graphs, association schemes and Steiner designs, Bull. Belgian Math. Soc. (5), 12 (2005), 845–857.

    MathSciNet  MATH  Google Scholar 

  40. M. H. Klin, S. Reichard, and A. J. Woldar, Siamese association schemes and Siamese Steiner designs. I. Introduction (in preparation).

    Google Scholar 

  41. M. H. Klin, S. Reichard, and A. J. Woldar, Siamese association schemes and Siamese Steiner designs. II. Objects on 15 points (in preparation).

    Google Scholar 

  42. M. Klin, C. Rücker, G. Rücker, and G. Tinhofer, Algebraic combinatorics in mathematical chemistry. Methods and algorithms. I. Permutation groups and coherent (cellular) algebras. MATCH, 40 (1999), 7–138.

    MATH  Google Scholar 

  43. E. S. Kramer and D. M. Mesner, t-Designs on hypergraphs, Discrete Math., 15 (1976), 263–296.

    Article  MathSciNet  MATH  Google Scholar 

  44. H. W. Kuhn, On imprimitive substitution groups, Am. J. Math., 26 (1904), 45–102.

    Article  MATH  Google Scholar 

  45. R. Laue, Computing double coset representatives for the generation of solvable groups, Lect. Notes Comput. Sci., 144 (1982), 65–70.

    MathSciNet  Google Scholar 

  46. E. N. Martin, On the imprimitive substitution groups of degree fifteen and the primitive substitution groups of degree eighteen, Am. J. Math., 23 (1901), 259–286.

    Article  MATH  Google Scholar 

  47. R. Mathon, Lower bounds for Ramsey numbers and association schemes, J. Comb. Theory, Ser. B, 42 (1987), 122–127.

    Article  MathSciNet  MATH  Google Scholar 

  48. R. A. Mathon, K. T. Phelps, and A. Rosa, Small Steiner triple systems and their properties, Ars Combinatoria, 15 (1983), 3–110.

    MathSciNet  MATH  Google Scholar 

  49. B. D. McKay, nauty User’s Guide (Version 1.5), Technical Report TR-CS-90-02, Computer Science Department, Australian National University, 1990.

    Google Scholar 

  50. S. Milici, A. Rosa, and V. Voloshin, Colouring Steiner systems with specified block colour patterns, Discrete Math. (1–3), 240 (2001), 145–160.

    Article  MathSciNet  MATH  Google Scholar 

  51. E. H. Moore, Tactical memoranda I–III, Am. J. Math., 18 (1896), 264–303.

    Article  MATH  Google Scholar 

  52. S. E. Payne, All generalized quadrangles of order 3 are known, J. Comb. Theory, 18 (1975), 203–206.

    Article  MATH  Google Scholar 

  53. S. E. Payne, Tight point sets in finite generalized quadrangles, Congressus Numerantium, 60 (1987), 243–260.

    MathSciNet  Google Scholar 

  54. S. E. Payne, and J. A. Thas, Finite Generalized Quadrangles, Research Notes in Mathematics, Pitman, London, 1984.

    MATH  Google Scholar 

  55. S. Reichard, Computational and Theoretical Analysis of Coherent Configurations and Related Incidence Structures, Thesis, University of Delaware, Newark, 2003.

    Google Scholar 

  56. R. Remak, Über Untergruppen direkter Produkte von drei Faktoren, Crelle’s J. Reine Angewandte Math., 166 (1931), 65–100.

    Google Scholar 

  57. B. Schmalz, t-Designs zu vorgegebener Automorphismengruppe, Thesis, Universität Bayreuth, Bayreuther Mathematische Schriften, 41 (1992), 1–164.

    MathSciNet  Google Scholar 

  58. B. Schmalz, The t-designs with prescribed automorphism group, new simple 6-designs, J. Comb. Des., 1 (1993), 126–170.

    Article  MathSciNet  Google Scholar 

  59. M. Schönert et al., GAPs – Groups, Algorithms, and Programming, Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochschule, Aachen, 1995.

    Google Scholar 

  60. W. R. Scott, Group Theory, Dover, New York, 1987.

    MATH  Google Scholar 

  61. M. W. Short, The Primitive Soluble Permutation Groups of Degree Less than 256, Lecture Notes in Mathematics, Vol. 1519, Springer, Berlin, 1992.

    MATH  Google Scholar 

  62. L. H. Soicher, GRAPE: A system for computing with graphs and groups, in L. Finkelstein and W. M. Kantor (eds.) Groups and Computation, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 11, pp. 287–291, Amer. Math. Soc., Providence, 1993.

    Google Scholar 

  63. E. Spence, http://www.maths.gla.ac.uk/~es/srgraphs.html.

  64. J. J. Sylvester, Elementary researches in the analysis of combinatorial aggregation, Philos. Mag., 24 (1844), 285–296.

    Google Scholar 

  65. J. A. Thas and S. E. Payne, Spreads and ovoids in finite generalized quadrangles, Geometrica Dedicata, 52 (1994), 227–253.

    Article  MathSciNet  MATH  Google Scholar 

  66. J. A. Todd, As it might have been, Bull. London Math. Soc., 2 (1970), 1–4.

    Article  MathSciNet  Google Scholar 

  67. A. Wasserman, Finding simple t-designs with enumeration techniques, J. Comb. Des. (2), 6 (1998), 79–90.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Klin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klin, M., Reichard, S., Woldar, A. (2009). Siamese Combinatorial Objects via Computer Algebra Experimentation. In: Klin, M., Jones, G.A., Jurišić, A., Muzychuk, M., Ponomarenko, I. (eds) Algorithmic Algebraic Combinatorics and Gröbner Bases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01960-9_2

Download citation

Publish with us

Policies and ethics