A New Message Recognition Protocol with Self-recoverability for Ad Hoc Pervasive Networks

  • Ian Goldberg
  • Atefeh Mashatan
  • Douglas R. Stinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5536)


We examine the problem of message recognition by reviewing the definitions and the security model in the literature. In particular, we examine the Jane Doe protocol, which was proposed by Lucks et al., more closely and note its inability to recover in case of a certain adversarial disruption. Our paper saves this well-studied protocol from its unrecoverable state when such adversarial disruption occurs. We propose a new message recognition protocol, which is based on the Jane Doe protocol, and incorporate the resynchronization technique within the protocol itself. That is, without having to provide a separate resynchronization procedure, we overcome the recoverability problem of the Jane Doe protocol. Moreover, we enumerate all possible attacks against the new protocol and show that none of the attacks can occur. We further prove the security of the new protocol and its ability to self-recover once the disruption has stopped.


Cryptographic Protocols Authentication Recognition Self-Recoverability Pervasive Networks Ad Hoc Networks 


  1. 1.
    Anderson, R., Bergadano, F., Crispo, B., Lee, J.-H., Manifavas, C., Needham, R.: A new family of authentication protocols. In: ACMOSR: ACM Operating Systems Review, vol. 32, pp. 9–20 (1998)Google Scholar
  2. 2.
    Gehrmann, C.: Multiround unconditionally secure authentication. Designs, Codes, and Cryptography 15(1), 67–86 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hammell, J., Weimerskirch, A., Girao, J., Westhoff, D.: Recognition in a low-power environment. In: ICDCSW 2005: Proceedings of the Second International Workshop on Wireless Ad Hoc Networking (WWAN), Washington, DC, USA, 2005, pp. 933–938. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  4. 4.
    Lucks, S., Zenner, E., Weimerskirch, A., Westhoff, D.: Entity recognition for sensor network motes. In: GI Jahrestagung (2), pp. 145–149 (2005)Google Scholar
  5. 5.
    Lucks, S., Zenner, E., Weimerskirch, A., Westhoff, D.: Concrete security for entity recognition: The Jane Doe protocol. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 158–171. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Mashatan, A., Stinson, D.R.: A New Message Recognition Protocol For Ad Hoc Pervasive Networks. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 378–394. Springer, Heidelberg (2008)Google Scholar
  7. 7.
    Mashatan, A., Stinson, D.R.: Interactive two-channel message authentication based on Interactive-Collision Resistant hash functions. Int. J. Inf. Secur. 8(1), 49–60 (2009)CrossRefGoogle Scholar
  8. 8.
    Mashatan, A., Stinson, D.R.: Recognition in ad hoc pervasive networks. Technical Report 2008-12, Centre for Applied Cryptographic Research (CACR), University of Waterloo, Canada (2008)Google Scholar
  9. 9.
    Mitchell, C.J.: Remote user authentication using public information. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 360–369. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Pasini, S., Vaudenay, S.: An optimal non-interactive message authentication protocol. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 280–294. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Weimerskirch, A., Westhoff, D.: Zero common-knowledge authentication for pervasive networks. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 73–87. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ian Goldberg
    • 1
  • Atefeh Mashatan
    • 2
  • Douglas R. Stinson
    • 1
  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.The Security and Cryptography Laboratory (LASEC)EPFLLausanneSwitzerland

Personalised recommendations