Skip to main content

Cardiac Motion Recovery and Boundary Conditions Estimation by Coupling an Electromechanical Model and Cine-MRI Data

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5528))

Abstract

We present a method for cardiac motion recovery using the adjustment of an electromechanical model of the heart to cine MRI. This approach is based on a proactive model which consists in a constrained minimisation of an energy coupling the model and the data. The presented method relies on specific image features in order to constrain the motion of the endocardia and epicardium and impose boundary conditions at the base. Thus, image intensity and gradient information are used to constrain the motion of the myocardium surfaces while a 3D block matching technique leads to the motion estimation of base vertices. Finally, we show that the implicit time integration of those forces and personalised boundary conditions lead to a better cardiac motion recovery from cine-MR images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunter, P.J., Nash, M.P., Sands, G.B.: Computational Electromechanics of the Heart. Computational biology of the heart, 345–407 (1997)

    Google Scholar 

  2. Sachse, F., Seemann, G., Werner, C., Riedel, C., Dössel, O.: Electro-mechanical modeling of the myocardium: Coupling and feedback mechanisms. Proc. Comp. Cardiol. 28, 161–164 (2001)

    Google Scholar 

  3. Frangi, A., Niessen, W., Viergever, M.: Three-Dimensional Modeling for Functional Analysis of Cardiac Images: A Review. IEEE Trans. on Med. Im. 1, 2–25 (2001)

    Article  Google Scholar 

  4. Papademetris, X., Sinusas, A.J., Dione, D.P., Duncan, J.S.: 3D Cardiac Deformation from Ultrasound Images. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 420–429. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Montagnat, J., Delingette, H.: 4D Deformable Models with temporal constraints: application to 4D cardiac image segmentation. Med. Im. Anal. 9, 87–100 (2005)

    Article  Google Scholar 

  6. Qian, Z., Metaxas, D., Axel, L.: A Learning Framework for the Automatic and Accurate Segmentation of Cardiac Tagged MRI Images. Comp. Vis. for Bio. Im. App., 93–102 (2005)

    Google Scholar 

  7. Shi, P., Liu, H.: Stochastic finite element framework for simultaneous estimation of cardiac kinematic functions and material parameters. Med. Im. An. 7, 445–464 (2003)

    Article  Google Scholar 

  8. Wong, K.C.L., Zhang, H., Liu, H., Shi, P.: Physiome Model Based State-Space Framework for Cardiac Kinematics Recovery. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 720–727. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Moireau, P., Chapelle, D., Le Tallec, P.: Joint state and parameter estimation for distributed mechanical systems. Computer Methods in Applied Mechanics and Engineering 197, 659–677 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sermesant, M., Konukoglu, E., Delingette, H., Coudiere, Y., Chinchaptanam, P., Rhode, K.S., Razavi, R., Ayache, N.: An anisotropic multi-front fast marching method for real-time simulation of cardiac electrophysiology. In: Sachse, F.B., Seemann, G. (eds.) FIMH 2007. LNCS, vol. 4466, pp. 160–169. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Bestel, J., Clément, F., Sorine, M.: A Biomechanical Model of Muscle Contraction. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 1159–1161. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Stergiopulos, N., Westerhof, B., Westerhof, N.: Total arterial inertance as the fourth element of the windkessel model. Am. J. of Phys. 276, H81–H88 (1999)

    Google Scholar 

  13. Sermesant, M., Delingette, H., Ayache, N.: An Electromechanical Model of the Heart for Image Analysis and Simulation. IEEE TMI 25, 612–625 (2006)

    Google Scholar 

  14. Billet, F., Sermesant, M., Delingette, H., Ayache, N.: Cardiac Motion Recovery by Coupling an Electromechanical Model and Cine-MRI Data: First Steps. In: Proc. of the Workshop on Comp. Biom. Med. MICCAI (2008)

    Google Scholar 

  15. Ourselin, S., Roche, A., Prima, S., Ayache, N.: Block Matching: A General Framework to Improve Robustness of Rigid Registration of Medical Images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 557–566. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Billet, F., Sermesant, M., Delingette, H., Ayache, N. (2009). Cardiac Motion Recovery and Boundary Conditions Estimation by Coupling an Electromechanical Model and Cine-MRI Data. In: Ayache, N., Delingette, H., Sermesant, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2009. Lecture Notes in Computer Science, vol 5528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01932-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01932-6_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01931-9

  • Online ISBN: 978-3-642-01932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics