Numerical Simulation of the Electromechanical Activity of the Heart

  • Dominique Chapelle
  • Miguel A. Fernández
  • Jean-Frédéric Gerbeau
  • Philippe Moireau
  • Jacques Sainte-Marie
  • Nejib Zemzemi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5528)


We present numerical results obtained with a three-dimensional electromechanical model of the heart with a complete realistic anatomy. The electrical activity of the heart-torso domain is described by the bidomain equations in the heart and a Laplace equation in the torso. The mechanical model is based on a chemically-controlled contraction law of the myofibres integrated in a 3D continuum mechanics description accounting for large displacements and strains, and the main cardiovascular blood compartments are represented by simplified lumped models. We considered a normal case and a pathological condition and the medical indicators resulting from the simulations show physiological values, both for mechanical and electrical quantities of interest, in particular pressures, volumes and ECGs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astorino, M., Gerbeau, J.-F., Pantz, O., Traoré, K.: Fluid-structure interaction and multi-body contact. Application to aortic valves. Comp. Meth. Appl. Mech. Engng., doi:10.1016/j.cma.2008.09.012Google Scholar
  2. 2.
    Baerentzen, J., Aanaes, H.: Signed distance computation using the angle weighted pseudo-normal. IEEE Trans. Visual. Comput. Graph. 11(3), 243–253 (2005)CrossRefGoogle Scholar
  3. 3.
    Bestel, J., Clément, F., Sorine, M.: A biomechanical model of muscle contraction. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208. Springer, Heidelberg (2001)Google Scholar
  4. 4.
    Boulakia, M., Fernández, M.A., Gerbeau, J.-F., Zemzemi, N.: Mathematical modelling of electrocardiograms: a numerical study (submitted)Google Scholar
  5. 5.
    Boulakia, M., Fernández, M.A., Gerbeau, J.-F., Zemzemi, N.: Towards the numerical simulation of electrocardiograms. In: Sachse, F.B., Seemann, G. (eds.) FIMH 2007. LNCS, vol. 4466, pp. 240–249. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Chapelle, D., Fernández, M.A., Gerbeau, J.-F., Moireau, P., Zemzemi, N.: A 3D model for the electromechanical activity of the heart (in preparation, 2009)Google Scholar
  7. 7.
    Ciarlet, P.G.: Mathematical Elasticity. In: Three-Dimensional Elasticity. Studies in Mathematics and its Applications, vol. I. North-Holland, Amsterdam (1988)Google Scholar
  8. 8.
    Frey, P.: Yams: A fully automatic adaptive isotropic surface remeshing procedure. Technical report 0252, Inria, Rocquencourt, France (November 2001)Google Scholar
  9. 9.
    George, P.L., Hecht, F., Saltel, E.: Fully automatic mesh generator for 3D domains of any shape. Impact of Comp. in Sci. ans Eng. 2, 187–218 (1990)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hill, A.V.: The heat of shortening and the dynamic constants in muscle. Proc. Roy. Soc. London (B) 126, 136–195 (1938)CrossRefGoogle Scholar
  11. 11.
    Huxley, A.F.: Muscle structure and theories of contraction. In: Progress in Biophysics and Biological Chemistry, vol. 7, pp. 255–318. Pergamon Press, Oxford (1957)Google Scholar
  12. 12.
    Kerckhoffs, R.C.P., Healy, S.N., Usyk, T.P., McCulloch, A.D.: Computational methods for cardiac electromechanics. Proc. IEEE 94(4), 769–783 (2006)CrossRefGoogle Scholar
  13. 13.
    Lab, M.J., Taggart, P., Sachs, F.: Mechano-electric feedback. Cardiovasc. Res. 32, 1–2 (1996)CrossRefGoogle Scholar
  14. 14.
    Le Tallec, P.: Numerical methods for nonlinear three-dimensional elasticity. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. 3. Elsevier, Amsterdam (1994)Google Scholar
  15. 15.
    MacDonald, D.A.: Blood Flow in Arteries. Edward Harold Press (1974)Google Scholar
  16. 16.
    Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bulletin Math. Bio. (65), 767–793 (2003)Google Scholar
  17. 17.
    Pullan, A.J., Buist, M.L., Cheng, L.K.: Mathematically modelling the electrical activity of the heart. From cell to body surface and back again. World Scientific, Singapore (2005)Google Scholar
  18. 18.
    Sachse, F.B.: Computational Cardiology: Modeling of Anatomy, Electrophysiology, and Mechanics. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  19. 19.
    Sachse, F.B., Frech, R., Werner, C.D., Dossel, O.: A model based approach to assignment of myocardial fibre orientation. Computers in Cardiology, 145–148 (1999)Google Scholar
  20. 20.
    Sainte-Marie, J., Chapelle, D., Cimrman, R., Sorine, M.: Modeling and estimation of the cardiac electromechanical activity. Computers & Structures 84, 1743–1759 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.-A., Tveito, A.: Computing the electrical activity in the heart. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  22. 22.
    Tung, L.: A bi-domain model for describing ischemic myocardial D–C potentials. PhD thesis, MIT (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dominique Chapelle
    • 1
  • Miguel A. Fernández
    • 1
  • Jean-Frédéric Gerbeau
    • 1
  • Philippe Moireau
    • 1
  • Jacques Sainte-Marie
    • 1
    • 2
  • Nejib Zemzemi
    • 1
    • 3
  1. 1.INRIA, RocquencourtLe Chesnay cedexFrance
  2. 2.LNHE/CETMEFChatou cedexFrance
  3. 3.Laboratoire de mathématiques d’OrsayUniv. Paris 11Orsay cedexFrance

Personalised recommendations