Skip to main content

The Importance of Model Parameters and Boundary Conditions in Whole Organ Models of Cardiac Contraction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5528))

Abstract

We have developed a model of active contraction in the whole heart, using an anatomical geometry of a failing human heart, fitted to MRI data. Deformation in this model was driven by a model of active tension generation in human ventricular myocytes. By perturbing model parameters and boundary conditions we have predicted which metrics of cardiac function are sensitive to different parameters or boundary conditions. This allows us to begin to identify parameters that can be determined from different diagnostic modalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nash, M.P., Hunter, P.J.: Computational mechanics of the heart - From tissue structure to ventricular function. Journal of Elasticity 61, 113–141 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269, 571–582 (1995)

    Google Scholar 

  3. Niederer, S.A., Hunter, P.J., Smith, N.P.: A Quantitative Analysis of Cardiac Myocyte Relaxation: A Simulation Study. Biophys. J. 90, 1697–1722 (2006)

    Article  Google Scholar 

  4. Kentish, J.C., Terkeurs, H., Ricciardi, L., Bucx, J.J.J., Noble, M.I.M.: Comparison between the Sarcomere Length-Force Relations of Intact and Skinned Trabeculae from Rat Right Ventricle - Influence of Calcium Concentrations on These Relations. Circ. Res. 58, 755–768 (1986)

    Article  Google Scholar 

  5. Beuckelmann, D.J., Erdmann, E.: Ca(2+)-currents and intracellular [Ca2+]i-transients in single ventricular myocytes isolated from terminally failing human myocardium. Basic Res. Cardiol. 87(suppl. 1), 235–243 (1992)

    Google Scholar 

  6. Schwinger, R.H., Bohm, M., Koch, A., Schmidt, U., Morano, I., Eissner, H.J., Uberfuhr, P., Reichart, B., Erdmann, E.: The failing human heart is unable to use the Frank-Starling mechanism. Circ. Res. 74, 959–969 (1994)

    Article  Google Scholar 

  7. Gwathmey, J.K., Hajjar, R.J.: Effect of protein kinase C activation on sarcoplasmic reticulum function and apparent myofibrillar Ca2+ sensitivity in intact and skinned muscles from normal and diseased human myocardium. Circ. Res. 67, 744–752 (1990)

    Article  Google Scholar 

  8. Gwathmey, J.K., Hajjar, R.J.: Relation between Steady-State Force and Intracellular Ca-2+ in Intact Human Myocardium - Index of Myofibrillar Responsiveness to Ca-2+. Circulation 82, 1266–1278 (1990)

    Article  Google Scholar 

  9. Dobesh, D.P., Konhilas, J.P., de Tombe, P.P.: Cooperative activation in cardiac muscle: impact of sarcomere length. Am. J. Physiol. 282, H1055–H1062 (2002)

    Google Scholar 

  10. Piroddi, N., Belus, A., Scellini, B., Tesi, C., Giunti, G., Cerbai, E., Mugelli, A., Poggesi, C.: Tension generation and relaxation in single myofibrils from human atrial and ventricular myocardium. Pflügers Archiv. European Journal of Physiology 454, 63–73 (2007)

    Article  Google Scholar 

  11. Stehle, R., Kruger, M., Scherer, P., Brixius, K., Schwinger, R.H.G., Pfitzer, G.: Isometric force kinetics upon rapid activation and relaxation of mouse, guinea pig and human heart muscle studied on the subcellular myofibrillar level. Basic Res. Cardiol. 97, 1435–1803 (2002)

    Article  Google Scholar 

  12. Hermann, H.-P., Zeitz, O., Lehnart, S.E., Keweloh, B., Datz, N., Hasenfuss, G., Janssen, P.M.L.: Potentiation of beta-adrenergic inotropic response by pyruvate in failing human myocardium. Cardiovascular Research 53, 116–123 (2002)

    Article  Google Scholar 

  13. Janssen, P.M.L., Zeitz, O., Keweloh, B., Siegel, U., Maier, L.S., Barckhausen, P., Pieske, B., Prestle, J., Lehnart, S.E., Hasenfuss, G.: Influence of cyclosporine A on contractile function, calcium handling, and energetics in isolated human and rabbit myocardium. Cardiovascular Research 47, 99–107 (2000)

    Article  Google Scholar 

  14. Hasenfuss, G., Mulieri, L.A., Leavitt, B.J., Allen, P.D., Haeberle, J.R., Alpert, N.R.: Alteration of contractile function and excitation-contraction coupling in dilated cardiomyopathy. Circ. Res. 70, 1225–1232 (1992)

    Article  Google Scholar 

  15. Schmid, H., Nash, M.P., Young, A.A., Hunter, P.J.: Myocardial material parameter estimation-a comparative study for simple shear. J. Biomech. Eng. 128, 742–750 (2006)

    Article  Google Scholar 

  16. Dokos, S., Smaill, B.H., Young, A.A., LeGrice, I.J.: Shear properties of passive ventricular myocardium. Am. J. Physiol. 283, H2650–H2659 (2002)

    Google Scholar 

  17. Stergiopulos, N., Meister, J.J., Westerhof, N.: Determinants of stroke volume and systolic and diastolic aortic pressure. Am. J. Physiol. 270, H2050–H2059 (1996)

    Google Scholar 

  18. Katz, A.: Physiology of the heart. Raven Press, New York (1977)

    Google Scholar 

  19. Vendelin, M., Bovendeerd, P.H.M., Engelbrecht, J., Arts, T.: Optimizing ventricular fibers: uniform strain or stress, but not ATP consumption, leads to high efficiency. Am. J. Physiol. 283(3), H1072–H1081

    Google Scholar 

  20. Bovendeerd, P.H.M., Arts, T., Huyghe, J.M., van Campen, D.H., Reneman, R.S.: Dependence of local left ventricular wall mechanics on myocardial fiber orientation: A model study. J. Biomech. 25(10), 1129–1140

    Google Scholar 

  21. Ten Tusscher, K.H.W.J., Hren, R., Panfilov, A.V.: Organization of Ventricular Fibrillation in the Human Heart. Circ. Res. 100(12), 87 (2007)

    Article  Google Scholar 

  22. Chinchapatnam, P.P., Rhode, K.S., King, A., Gao, G., Ma, Y., Schaeffter, T., Hawkes, D.J., Razavi, R.S., Hill, D.L.G., Arridge, S., Sermesant, M.: Anisotropic Wave Propagation and Apparent Conductivity Estimation in a Fast Electrophysiological Model: Application to XMR Interventional Imaging. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 575–583. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niederer, S., Rhode, K., Razavi, R., Smith, N. (2009). The Importance of Model Parameters and Boundary Conditions in Whole Organ Models of Cardiac Contraction. In: Ayache, N., Delingette, H., Sermesant, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2009. Lecture Notes in Computer Science, vol 5528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01932-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01932-6_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01931-9

  • Online ISBN: 978-3-642-01932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics