Advertisement

Item Weighting Techniques for Collaborative Filtering

  • Linas Baltrunas
  • Francesco Ricci
Part of the Studies in Computational Intelligence book series (SCI, volume 220)

Abstract

Collaborative Filtering (CF) recommender systems generate rating predictions for a target user by exploiting the ratings of similar users. Therefore, the computation of user-to-user similarity is an important element in CF; it is used in the neighborhood formation and rating prediction steps. In this paper we investigate the role of item weighting techniques. An item weight provides a measure of the importance of an item for predicting the rating of another item and it is computed as a correlation coefficient between the two items’ rating vectors. In this paper we analyze a wide range of item weighting schemas. Moreover, we introduce an item filtering approach, based on item weighting, that works by discarding in the user-touser similarity computation the items with the smallest weights.We assume that the items with smallest weights are the least useful for generating the prediction. We have evaluated the proposed methods using two datasets (MovieLens and Yahoo!) and identified the conditions for their best application in CF.

Keywords

Mutual Information Recommender System Target Item Latent Semantic Analysis Target User 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems 23(1), 103–145 (2005)CrossRefGoogle Scholar
  2. 2.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  3. 3.
    Aha, D.W.: Feature weighting for lazy learning algorithms. In: Feature extraction, construction and selection: a data mining perspective, vol. SECS 453, pp. 13–32. Kluwer Academic, Boston (1998)Google Scholar
  4. 4.
    Baltrunas, L., Ricci, F.: Dynamic item weighting and selection for collaborative filtering. In: Berendt, B., Mladenic, D., Semeraro, G., Spiliopoulou, M., Stumme, G., Svatek, V., Zelezny, F. (eds.) Web Mining 2.0 International Workshop located at the ECML/PKDD 2007, pp. 135–146 (2007)Google Scholar
  5. 5.
    Baltrunas, L., Ricci, F.: Locally adaptive neighborhood selection for collaborative filtering recommendations. In: Nejdl, W., Kay, J., Pu, P., Herder, E. (eds.) AH 2008. LNCS, vol. 5149, pp. 22–31. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Berkovsky, S., Kuflik, T., Ricci, F.: Cross-domain mediation in collaborative filtering. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS, vol. 4511, pp. 355–359. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Billsus, D., Pazzani, M.J.: Learning collaborative information filters. In: Shavlik, J.W. (ed.) ICML, pp. 46–54. Morgan Kaufmann, San Francisco (1998)Google Scholar
  8. 8.
    Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algorithms for collaborative filtering. In: Cooper, G.F., Moral, S. (eds.) UAI, pp. 43–52. Morgan Kaufmann, San Francisco (1998)Google Scholar
  9. 9.
    Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. Journal of the American Society of Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  10. 10.
    Geng, X., Liu, T.Y., Qin, T., Li, H.: Feature selection for ranking. In: SIGIR 2007: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 407–414. ACM, New York (2007)CrossRefGoogle Scholar
  11. 11.
    Golub, G.H., Van Loan, C.F.: Matrix Computations (Johns Hopkins Studies in Mathematical Sciences). The Johns Hopkins University Press (1996)Google Scholar
  12. 12.
    Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: SIGIR, pp. 230–237. ACM, New York (1999)CrossRefGoogle Scholar
  13. 13.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22, 5–53 (2004)CrossRefGoogle Scholar
  14. 14.
    Jin, R., Chai, J.Y., Si, L.: An automatic weighting scheme for collaborative filtering. In: SIGIR 2004: Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 337–344. ACM Press, New York (2004)Google Scholar
  15. 15.
    Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)zbMATHCrossRefGoogle Scholar
  16. 16.
    Langley, P.: Selection of relevant features in machine learning. In: Proceedings of the AAAI Fall Symposium on Relevance. AAAI Press, Menlo Park (1994)Google Scholar
  17. 17.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  18. 18.
    MovieLens dataset, http://www.grouplens.org/
  19. 19.
    Radlinski, F., Joachims, T.: Query chains: learning to rank from implicit feedback. In: KDD 2005: Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pp. 239–248. ACM Press, New York (2005)CrossRefGoogle Scholar
  20. 20.
    Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  21. 21.
    Salton, G., Mcgill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill Inc., New York (1986)Google Scholar
  22. 22.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in recommender systems – a case study. In: Proceedings of the WebKDD 2000 Workshop at the ACM-SIGKDD Conference on Knowledge Discovery in Databases (2000)Google Scholar
  23. 23.
    SAS Institute Inc., SAS OnlineDoc(TM), Version 7-1 Cary, SAS Institute Inc., NC (1999)Google Scholar
  24. 24.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Doug Rohde’s SVD C Library, version 1.34, http://tedlab.mit.edu/~dr/svdlibc/
  26. 26.
    Wettschereck, D., Aha, D.W., Mohri, T.: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 11(1-5), 273–314 (1997)CrossRefGoogle Scholar
  27. 27.
    Yahoo! Research Webscope Movie Data Set. Version1.0, http://research.yahoo.com/
  28. 28.
    Yu, K., Xu, X., Ester, M., Kriegel, H.P.: Feature weighting and instance selection for collaborative filtering: An information-theoretic approach*. Knowledge and Information Systems 5(2), 201–224 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Linas Baltrunas
    • 1
  • Francesco Ricci
    • 1
  1. 1.Free University of Bozen-BolzanoBozenItaly

Personalised recommendations