Luminescent Iridium Complexes and Their Applications

Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 28)

Abstract

Considerable studies have been made on iridium complexes during the past 10 years, due to their high quantum efficiency, color tenability, and potential applications in various areas. In this chapter, we review the synthesis, structure, and photophysical properties of luminescent Ir complexes, as well as their applications in organic light-emitting diodes (OLEDs), biological labeling, sensitizers of luminescence, and chemosensors.

Keywords

Biological labeling Chemosensor Iridium complex Luminescent Organic light-emitting diodes Structure Synthesis 

References

  1. 1.
    Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Nature 395:151–154CrossRefGoogle Scholar
  2. 2.
    Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Appl Phys Lett 75:4–6CrossRefGoogle Scholar
  3. 3.
    Watts RJ, Houten JV (1974) J Am Chem Soc 96:4334–4335CrossRefGoogle Scholar
  4. 4.
    Dedeian K, Djurovich PI, Garces FO, Carlson G, Watts RJ (1991) Inorg Chem 30:1685–1687CrossRefGoogle Scholar
  5. 5.
    Lowry MS, Goldsmiths JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S (2005) Chem Mater 17:5712–5719CrossRefGoogle Scholar
  6. 6.
    Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) J Am Chem Soc 123:4304–4312CrossRefGoogle Scholar
  7. 7.
    Zhou GJ, Wong WY, Yao B, Xie ZY, Wang LX (2007) Angew Chem Int Ed 46:1149–1151CrossRefGoogle Scholar
  8. 8.
    Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K (2003) J Am Chem Soc 125:12971–12979CrossRefGoogle Scholar
  9. 9.
    Okada S, Okinaka K, Iwawaki H, Furugori M, Hashimoto M, Mukaide T, Kamatani J, Igawa S, Tsuboyama A, Takiguchi T, Ueno K (2005) Dalton Trans:1583–1590Google Scholar
  10. 10.
    Adachi C, Baldo MA, Forrest SR, Thompson ME (2000) Appl Phys Lett 77:904–906CrossRefGoogle Scholar
  11. 11.
    Amao Y, Ishikawa Y, Okura I (2001) Anal Chim Acta 445:177–182CrossRefGoogle Scholar
  12. 12.
    Blumstengel S, Meinardi F, Tubino R, Gurioli M, Jandke M, Strohriegl P (2001) J Chem Phys 115:3249–3255CrossRefGoogle Scholar
  13. 13.
    Grushin VV, Herron N, LeCloux DD, Marshall WJ, Petrov VA, Wang Y (2001) Chem Commun 1494–1495Google Scholar
  14. 14.
    Adamovich V, Brooks J, Tamayo A, Alexander AM, Djurovich PI, D'Andrade BW, Adachi C, Forrest SR, Thompson ME (2002) New J Chem 26:1171–1178CrossRefGoogle Scholar
  15. 15.
    Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME (2003) J Am Chem Soc 125:7377–7387CrossRefGoogle Scholar
  16. 16.
    King KA, Spellane PJ, Watts RJ (1985) J Am Chem Soc 107:1431–1432CrossRefGoogle Scholar
  17. 17.
    Colombo MG, Brunold TC, Riedener T, Gudel HU, Fortsch M, Burgi HB (1994) Inorg Chem 33:545–550CrossRefGoogle Scholar
  18. 18.
    Brunner K, van Dijken A, Borner H, Bastiaansen J, Kiggen NMM, Langeveld BMW (2004) J Am Chem Soc 126:6035–6042CrossRefGoogle Scholar
  19. 19.
    Adachi C, Baldo MA, Forrest SR, Lamansky S, Thompson ME, Kwong RC (2001) Appl Phys Lett 78:1622–1624CrossRefGoogle Scholar
  20. 20.
    Adachi C, Baldo MA, Thompson ME, Forrest SR (2001) J Appl Phys 90:5048–5051CrossRefGoogle Scholar
  21. 21.
    Adachi C, Kwong RC, Djurovich P, Adamovich V, Baldo MA, Thompson ME, Forrest SR (2001) Appl Phys Lett 79:2082–2084CrossRefGoogle Scholar
  22. 22.
    Ikai M, Tokito S, Sakamoto Y, Suzuki T, Taga Y (2001) Appl Phys Lett 79:156–158CrossRefGoogle Scholar
  23. 23.
    Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Kwong R, Tsyba I, Bortz M, Mui B, Bau R, Thompson ME (2001) Inorg Chem 40:1704–1711CrossRefGoogle Scholar
  24. 24.
    Duan JP, Sun PP, Cheng CH (2003) Adv Mater 15:224–228CrossRefGoogle Scholar
  25. 25.
    Holmes RJ, D'Andrade BW, Forrest SR, Ren X, Li J, Thompson ME (2003) Appl Phys Lett 83:3818–3820CrossRefGoogle Scholar
  26. 26.
    Su YJ, Huang HL, Li CL, Chien CH, Tao YT, Chou PT, Datta S, Liu RS (2003) Adv Mater 15:884–888CrossRefGoogle Scholar
  27. 27.
    Tokito S, Iijima T, Tsuzuki T, Sato F (2003) Appl Phys Lett 83:2459–2461CrossRefGoogle Scholar
  28. 28.
    Coppo P, Plummer EA, De Cola L (2004) Chem Commun 1774–1775Google Scholar
  29. 29.
    Wilkinson AJ, Puschmann H, Howard JAK, Foster CE, Williams JAG (2006) Inorg Chem 45:8685–8699CrossRefGoogle Scholar
  30. 30.
    Wilkinson AJ, Goeta AE, Foster CE, Williams JAG (2004) Inorg Chem 43:6513–6515CrossRefGoogle Scholar
  31. 31.
    Williams JAG, Wilkinson AJ, Whittle VL (2008) Dalton Trans 2081–2099Google Scholar
  32. 32.
    Neve F, Crispini A (2000) Eur J Inorg Chem 1039–1043Google Scholar
  33. 33.
    Lo KKW, Ng DCM, Chung CK (2001) Organometallics 20:4999–5001CrossRefGoogle Scholar
  34. 34.
    Lo KKW, Chung CK, Ng DCM, Zhu NY (2002) New J Chem 26:81–88CrossRefGoogle Scholar
  35. 35.
    Lo KKW, Chung CK, Lee TKM, Lui LH, Tsang KHK, Zhu NY (2003) Inorg Chem 42:6886–6897CrossRefGoogle Scholar
  36. 36.
    Lo KKW, Chung CK, Zhu NY (2003) Chem Eur J 9:475–483CrossRefGoogle Scholar
  37. 37.
    Colombo MG, Gudel HU (1993) Inorg Chem 32:3081–3087CrossRefGoogle Scholar
  38. 38.
    Colombo MG, Hauser A, Gudel HU (1993) Inorg Chem 32:3088–3092CrossRefGoogle Scholar
  39. 39.
    Ohsawa Y, Sprouse S, King KA, Dearmond MK, Hanck KW, Watts RJ (1987) J Phys Chem 91:1047–1054CrossRefGoogle Scholar
  40. 40.
    Maestri M, Sandrini D, Balzani V, Maeder U, Vonzelewsky A (1987) Inorg Chem 26:1323–1327CrossRefGoogle Scholar
  41. 41.
    Nazeeruddin MK, Humphry-Baker R, Berner D, Rivier S, Zuppiroli L, Graetzel M (2003) J Am Chem Soc 125:8790–8797CrossRefGoogle Scholar
  42. 42.
    Whittle VL, Williams JAG (2008) Inorg Chem 47:6596–6607CrossRefGoogle Scholar
  43. 43.
    Goodall W, Wild K, Arm KJ, Williams JAG (2002) J Chem Soc Perkin Trans 2:1669–1681Google Scholar
  44. 44.
    Leslie W, Batsanov AS, Howard JAK, Williams JAG (2004) Dalton Trans 623–631Google Scholar
  45. 45.
    Inomata H, Goushi K, Masuko T, Konno T, Imai T, Sasabe H, Brown JJ, Adachi C (2004) Chem Mater 16:1285–1291CrossRefGoogle Scholar
  46. 46.
    Paulose B, Rayabarapu DK, Duan JP, Cheng CH (2004) Adv Mater 16:2003–2007CrossRefGoogle Scholar
  47. 47.
    Rayabarapu DK, Paulose B, Duan JP, Cheng CH (2005) Adv Mater 17:349–353CrossRefGoogle Scholar
  48. 48.
    Yeh SJ, Wu MF, Chen CT, Song YH, Chi Y, Ho MH, Hsu SF, Chen CH (2005) Adv Mater 17:285–289CrossRefGoogle Scholar
  49. 49.
    Guan M, Chen ZQ, Bian ZQ, Liu ZW, Gong ZL, Baik W, Lee HJ, Huang CH (2006) Org Electron 7:330–336CrossRefGoogle Scholar
  50. 50.
    Tsuzuki T, Tokito S (2007) Adv Mater 19:276–280CrossRefGoogle Scholar
  51. 51.
    Ho CL, Wong WY, Gao ZQ, Chen CH, Cheah KW, Yao B, Xie ZY, Wang Q, Ma DG, Wang LA, Yu XM, Kwok HS, Lin ZY (2008) Adv Funct Mater 18:319–331CrossRefGoogle Scholar
  52. 52.
    Bolink HJ, Cappelli L, Coronado E, Gratzel M, Orti E, Costa RD, Viruela PM, Nazeeruddin MK (2006) J Am Chem Soc 128:14786–14787CrossRefGoogle Scholar
  53. 53.
    Bolink HJ, Cappelli L, Coronado E, Parham A, Stossel P (2006) Chem Mater 18:2778–2780CrossRefGoogle Scholar
  54. 54.
    Chen FC, Yang Y, Pei Q (2002) Appl Phys Lett 81:4278–4280CrossRefGoogle Scholar
  55. 55.
    Su HC, Chen HF, Fang FC, Liu CC, Wu CC, Wong KT, Liu YH, Peng SM (2008) J Am Chem Soc 130:3413–3419CrossRefGoogle Scholar
  56. 56.
    Zeng XS, Tavasli M, Perepichka IE, Batsanov AS, Bryce MR, Chiang CJ, Rothe C, Monkman AP (2008) Chem Eur J 14:933–943CrossRefGoogle Scholar
  57. 57.
    Bolink HJ, Cappelli L, Cheylan S, Coronado E, Costa RD, Lardies N, Nazeeruddin MK, Orti E (2007) J Mater Chem 17:5032–5041CrossRefGoogle Scholar
  58. 58.
    Dragonetti C, Falciola L, Mussini P, Righetto S, Roberto D, Ugo R, Valore A, De Angelis F, Fantacci S, Sgamellotti A, Ramon M, Muccini M (2007) Inorg Chem 46:8533–8547CrossRefGoogle Scholar
  59. 59.
    Tamayo AB, Garon S, Sajoto T, Djurovich PI, Tsyba IM, Bau R, Thompson ME (2005) Inorg Chem 44:8723–8732CrossRefGoogle Scholar
  60. 60.
    Nazeeruddin MK, Wegh RT, Zhou Z, Klein C, Wang Q, De Angelis F, Fantacci S, Gratzel M (2006) Inorg Chem 45:9245–9250CrossRefGoogle Scholar
  61. 61.
    Lo KKW, Zhang KY, Leung SK, Tang MC (2008) Angew Chem Int Ed 47:2213–2216CrossRefGoogle Scholar
  62. 62.
    Lo KKW, Zhang KY, Chung CK, Kwok KY (2007) Chem Eur J 13:7110–7120CrossRefGoogle Scholar
  63. 63.
    Lo KKW, Chung CK, Zhu NY (2006) Chem Eur J 12:1500–1512CrossRefGoogle Scholar
  64. 64.
    Lo KKW, Hui WK, Chung CK, Tsang KHK, Ng DCM, Zhu NY, Cheung KK (2005) Coord Chem Rev 249:1434–1450CrossRefGoogle Scholar
  65. 65.
    Chen FF, Bian ZQ, Liu ZW, Nie DB, Chen ZQ, Huang CH (2008) Inorg Chem 47:2507–2513CrossRefGoogle Scholar
  66. 66.
    Mehlstaubl M, Kottas GS, Colella S, De Cola L (2008) Dalton Trans 2385–2388Google Scholar
  67. 67.
    Coppo P, Duati M, Kozhevnikov VN, Hofstraat JW, De Cola L (2005) Angew Chem Int Ed 44:1806–1810CrossRefGoogle Scholar
  68. 68.
    DeRosa MC, Hodgson DJ, Enright GD, Dawson B, Evans CEB, Crutchley RJ (2004) J Am Chem Soc 126:7619–7626CrossRefGoogle Scholar
  69. 69.
    Borisov SM, Klimant I (2007) Anal Chem 79:7501–7509CrossRefGoogle Scholar
  70. 70.
    Fernandez-Sanchez JF, Roth T, Cannas R, Nazeeruddin MK, Spichiger S, Graetzel M, Spichiger-Keller UE (2007) Talanta 71:242–250CrossRefGoogle Scholar
  71. 71.
    Medina-Castillo AL, Fernandez-Sanchez JF, Klein C, Nazeeruddin MK, Segura-Carretero A, Fernandez-Gutierrez A, Graetzel M, Spichiger-Keller UE (2007) Analyst 132:929–936CrossRefGoogle Scholar
  72. 72.
    Lo SC, Male NAH, Markham JPJ, Magennis SW, Burn PL, Salata OV, Samuel IDW (2002) Adv Mater 14:975–979Google Scholar
  73. 73.
    Markham JPJ, Samuel IDW, Lo SC, Burn PL, Weiter M, Bassler H (2004) J Appl Phys 95:438–445CrossRefGoogle Scholar
  74. 74.
    Lo SC, Richards GJ, Markham JPJ, Namdas EB, Sharma S, Burn PL, Samuel IDW (2005) Adv Funct Mater 15:1451–1458CrossRefGoogle Scholar
  75. 75.
    Zhou GJ, Wong WY, Yao B, Xie Z, Wang L (2008) J Mater Chem 18:1799–1809CrossRefGoogle Scholar
  76. 76.
    Li XH, Chen Z, Zhao Q, Shen L, Li FY, Yi T, Cao Y, Huang CH (2007) Inorg Chem 46:5518–5527CrossRefGoogle Scholar
  77. 77.
    Hwang SH, Shreiner CD, Moorefield CN, Newkome GR (2007) New J Chem 31:1192–1217CrossRefGoogle Scholar
  78. 78.
    Lo SC, Burn PL (2007) Chem Rev 107:1097–1116CrossRefGoogle Scholar
  79. 79.
    Nonoyama M (1974) Bull Chem Soc Jpn 47:767–768CrossRefGoogle Scholar
  80. 80.
    Li J, Djurovich PI, Alleyne BD, Tsyba I, Ho NN, Bau R, Thompson ME (2004) Polyhedron 23:419–428CrossRefGoogle Scholar
  81. 81.
    Song YH, Yeh SJ, Chen CT, Chi Y, Liu CS, Yu JK, Hu YH, Chou PT, Peng SM, Lee GH (2004) Adv Funct Mater 14:1221CrossRefGoogle Scholar
  82. 82.
    Chen XW, Liao JL, Liang YM, Ahmed MO, Tseng HE, Chen SA (2003) J Am Chem Soc 125:636–637CrossRefGoogle Scholar
  83. 83.
    Nonoyama M (1974) J Organomet Chem 82:271–276CrossRefGoogle Scholar
  84. 84.
    Zhao Q, Liu SJ, Shi M, Wang CM, Yu MX, Li L, Li FY, Yi T, Huang CH (2006) Inorg Chem 45:6152–6160CrossRefGoogle Scholar
  85. 85.
    Di Censo D, Fantacci S, De Angelis F, Klein C, Evans N, Kalyanasundaram K, Bolink HJ, Gratzel M, Nazeeruddin MK (2008) Inorg Chem 47:980–989CrossRefGoogle Scholar
  86. 86.
    Ayala NP, Flynn CM, Sacksteder L, Demas JN, Degraff BA (1990) J Am Chem Soc 112:3837–3844CrossRefGoogle Scholar
  87. 87.
    Baranoff E, Collin JP, Flamigni L, Sauvage JP (2004) Chem Soc Rev 33:147–155CrossRefGoogle Scholar
  88. 88.
    Douglas B, McDaniel D, Alexander J (1994) Concepts and models in inorganic chemistry, 3rd edn. Wiley, New YorkGoogle Scholar
  89. 89.
    Liu ZW, Nie DB, Bian ZQ, Chen FF, Lou B, Bian J, Huang CH (2008) ChemPhysChem 9:634–640CrossRefGoogle Scholar
  90. 90.
    You Y, Seo J, Kim SH, Kim KS, Ahn TK, Kim D, Park SY (2008) Inorg Chem 47:1476–1487CrossRefGoogle Scholar
  91. 91.
    You Y, Kim KS, Ahn TK, Kim D, Park SY (2007) J Phys Chem C 111:4052–4060CrossRefGoogle Scholar
  92. 92.
    You YM, Park SY (2005) J Am Chem Soc 127:12438–12439CrossRefGoogle Scholar
  93. 93.
    Hay PJ (2002) J Phys Chem A 106:1634–1641CrossRefGoogle Scholar
  94. 94.
    De Angelis F, Fantacci S, Evans N, Klein C, Zakeeruddin SM, Moser JE, Kalyanasundaram K, Bolink HJ, Gratzel M, Nazeeruddin MK (2007) Inorg Chem 46:5989–6001CrossRefGoogle Scholar
  95. 95.
    Holmes RJ, Forrest SR, Tung YJ, Kwong RC, Brown JJ, Garon S, Thompson ME (2003) Appl Phys Lett 82:2422–2424CrossRefGoogle Scholar
  96. 96.
    Lin JJ, Liao WS, Huang HJ, Wu FI, Cheng CH (2008) Adv Funct Mater 18:485–491CrossRefGoogle Scholar
  97. 97.
    Su SJ, Sasabe H, Takeda T, Kido J (2008) Chem Mater 20:1691–1693CrossRefGoogle Scholar
  98. 98.
    Williams EL, Li J, Jabbour GE (2006) Appl Phys Lett 89:083506CrossRefGoogle Scholar
  99. 99.
    D'Andrade BW, Thompson ME, Forrest SR (2002) Adv Mater 14:147–151CrossRefGoogle Scholar
  100. 100.
    D'Andrade BW, Holmes RJ, Forrest SR (2004) Adv Mater 16:624–628CrossRefGoogle Scholar
  101. 101.
    Kwong RC, Lamansky S, Thompson ME (2000) Adv Mater 12:1134–1138CrossRefGoogle Scholar
  102. 102.
    Liu ZW, Bian ZQ, Hao F, Nie DB, Ding F, Chen ZQ, Huang CH (2009) Org Electron. doi:10.1016/j.orgel.2008.11.013Google Scholar
  103. 103.
    Gong JR, Wan LJ, Lei SB, Bai CL, Zhang XH, Lee ST (2005) J Phys Chem B 109:1675–1682CrossRefGoogle Scholar
  104. 104.
    Song YH, Yeh SJ, Chen CT, Chi Y, Liu CS, Yu JK, Hu YH, Chou PT, Peng SM, Lee GH (2004) Adv Funct Mater 14:1221–1226CrossRefGoogle Scholar
  105. 105.
    Wang Y, Herron N, Grushin VV, LeCloux D, Petrov V (2001) Appl Phys Lett 79:449–451CrossRefGoogle Scholar
  106. 106.
    Liu ZW, Guan M, Bian ZQ, Nie DB, Gong ZL, Li ZB, Huang CH (2006) Adv Funct Mater 16:1441–1448CrossRefGoogle Scholar
  107. 107.
    Liu ZW, Bian ZQ, Ming L, Ding F, Shen HY, Nie DB, Huang CH (2008) Org Electron 9:171–182CrossRefGoogle Scholar
  108. 108.
    Slinker JD, Koh CY, Malliaras GG, Lowry MS, Bernhard S (2005) Appl Phys Lett 86:173506CrossRefGoogle Scholar
  109. 109.
    Slinker JD, Gorodetsky AA, Lowry MS, Wang JJ, Parker S, Rohl R, Bernhard S, Malliaras GG (2004) J Am Chem Soc 126:2763–2767CrossRefGoogle Scholar
  110. 110.
    Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S (2005) Chem Mater 17:5712–5719CrossRefGoogle Scholar
  111. 111.
    Yu MX, Zhao Q, Shi LX, Li FY, Zhou ZG, Yang H, Yia T, Huang CH (2008) Chem Commun 2115–2117Google Scholar
  112. 112.
    Adachi C, Baldo MA, Forrest SR (2000) J Appl Phys 87:8049–8055CrossRefGoogle Scholar
  113. 113.
    Hong ZR, Liang CJ, Li RG, Li WL, Zhao D, Fan D, Wang DY, Chu B, Zang FX, Hong LS, Lee ST (2001) Adv Mater 13:1241–1245CrossRefGoogle Scholar
  114. 114.
    Sun M, Xin H, Wang KZ, Zhang YA, Jin LP, Huang CH (2003) Chem Commun 702–703Google Scholar
  115. 115.
    Liang FS, Zhou QG, Cheng YX, Wang LX, Ma DG, Jing XB, Wang FS (2003) Chem Mater 15:1935–1937CrossRefGoogle Scholar
  116. 116.
    Kang TS, Harrison BS, Bouguettaya M, Foley TJ, Boncella JM, Schanze KS, Reynolds JR (2003) Adv Funct Mater 13:205–210CrossRefGoogle Scholar
  117. 117.
    Kawamura Y, Wada Y, Hasegawa Y, Iwamuro M, Kitamura T, Yanagida S (1999) Appl Phys Lett 74:3245–3247CrossRefGoogle Scholar
  118. 118.
    Motson GR, Fleming JS, Brooker S (2004) Potential applications for the use of lanthanide complexes as luminescent biolabels. In: Advances in inorganic chemistry: including bioinorganic studies, vol 55. Academic, London, pp 361–432Google Scholar
  119. 119.
    Bunzli JCG, Piguet C (2005) Chem Soc Rev 34:1048–1077CrossRefGoogle Scholar
  120. 120.
    Werts MHV, Jukes RTF, Verhoeven JW (2002) Phys Chem Chem Phys 4:1542–1548CrossRefGoogle Scholar
  121. 121.
    Chen FF, Bian ZQ, Lou B, Ma E, Liu ZW, Nie DB, Chen ZQ, Bian J, Chen ZN, Huang CH (2008) Dalton Trans 41:5577–5583CrossRefGoogle Scholar
  122. 122.
    DeRosa MC, Mosher PJ, Evans CEB, Crutchley RJ (2003) Macromol Symp 196:235–248CrossRefGoogle Scholar
  123. 123.
    Vanderdonckt E, Camerman B, Hendrick F, Herne R, Vandeloise R (1994) Bull Soc Chim Belg 103:207–211CrossRefGoogle Scholar
  124. 124.
    DiMarco G, Lanza M, Pieruccini M, Campagna S (1996) Adv Mater 8:576–580CrossRefGoogle Scholar
  125. 125.
    Di Marco G, Lanza M, Mamo A, Stefio I, Di Pietro C, Romeo G, Campagna S (1998) Anal Chem 70:5019–5023CrossRefGoogle Scholar
  126. 126.
    DeRosa MC, Mosher PJ, Yap GPA, Focsaneanu KS, Crutchley RJ, Evans CEB (2003) Inorg Chem 42:4864–4872CrossRefGoogle Scholar
  127. 127.
    Chen HL, Zhao Q, Wu YB, Li FY, Yang H, Yi T, Huang CH (2007) Inorg Chem 46:11075–11081CrossRefGoogle Scholar
  128. 128.
    Ho ML, Hwang FM, Chen PN, Hu YH, Cheng YM, Chen KS, Lee GH, Chi Y, Chou PT (2006) Org Biomol Chem 4:98–103CrossRefGoogle Scholar
  129. 129.
    Schmittel M, Lin HW (2007) Inorg Chem 46:9139–9145CrossRefGoogle Scholar
  130. 130.
    Ho ML, Cheng YM, Wu LC, Chou PT, Lee GH, Hsu FC, Chi Y (2007) Polyhedron 26:4886–4892CrossRefGoogle Scholar
  131. 131.
    Liu ZW, Bian ZQ, Bian J, Li ZD, Nie DB, Huang CH (2008) Inorg Chem 47:8025–8030CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations