Advertisement

Robust Multi-modal and Multi-unit Feature Level Fusion of Face and Iris Biometrics

  • Ajita Rattani
  • Massimo Tistarelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)

Abstract

Multi-biometrics has recently emerged as a mean of more robust and efficient personal verification and identification. Exploiting information from multiple sources at various levels i.e., feature, score, rank or decision, the false acceptance and rejection rates can be considerably reduced. Among all, feature level fusion is relatively an understudied problem. This paper addresses the feature level fusion of multi-modal and multi-unit sources of information. For multi-modal fusion the face and iris biometric traits are considered, while the multi-unit fusion is applied to merge the data from the left and right iris images. The proposed approach computes the SIFT features from both biometric sources, either multi-modal or multi-unit. For each source, feature selection on the extracted SIFT features is performed via spatial sampling. Then these selected features are finally concatenated together into a single feature super-vector using serial fusion. This concatenated super feature vector is used to perform classification.

Experimental results from face and iris standard biometric databases are presented. The reported results clearly show the performance improvements in classification obtained by applying feature level fusion for both multi-modal and multi-unit biometrics in comparison to uni-modal classification and score level fusion.

Keywords

Face Image Scale Invariant Feature Transform Iris Image Level Fusion Iris Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hong, L., Jain, A., Pankanti, S.: Can Multi-biometrics Improve performance. In: Proc. of AutoID 1999, pp. 59–64 (1999) Google Scholar
  2. 2.
    Jain, A.K., Ross, A.: Multi-biometric systems. Communications of the ACM 47(1), 34–40 (2004) Google Scholar
  3. 3.
    Ross, A., Jain, A.K.: Information Fusion in Biometrics. Pattern Recognition Letters 24, 2115–2125 (2003) Google Scholar
  4. 4.
    Chibelushi, C.C., Mason, J.S., Deravi, F.: Integration of acoustic and visual speech for speaker recognition. In: EUROSPEECH 1993, pp. 157–160 (1993) Google Scholar
  5. 5.
    Duc, B., Maître, G., Fischer, S., Bigün, J.: Person authentication by fusing face and speech information. In: Bigün, J., Borgefors, G., Chollet, G. (eds.) AVBPA 1997. LNCS, vol. 1206. Springer, Heidelberg (1997) Google Scholar
  6. 6.
    Hong, L., Jain, A.: Integrating Faces and Fingerprints for Personal Identification. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(12), 1295–1307 (1998) Google Scholar
  7. 7.
    Ross, A., Govindarajan, R.: Feature Level Fusion Using Hand and Face Biometrics. In: Proc. of SPIE Conference on Biometric Technology for Human Identification II, Orlando, USA, pp. 196–204 (2005) Google Scholar
  8. 8.
    Zhou, X., Bhanu, B.: Feature fusion of face and Gait for Human Recognition at a distance in video. In: International Conference on Pattern Recognition, Hong kong, (2006) Google Scholar
  9. 9.
    Singh, S., Gyaourova, G., Pavlidis, I.: Infrared and visible image fusion for face recognition. In: SPIE Defense and Security Symposium, pp. 585–596 (2004) Google Scholar
  10. 10.
    Wang, Y., Tan, T., Jain, A.K.: Combining Face and Iris Biometrics for Identity Verification. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 805–813. Springer, Heidelberg (2003) Google Scholar
  11. 11.
    Zhang, Z., Wang, R., Pan, K., Li, S.Z., Zhang, P.: Fusion of near infrared face and iris biometrics. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 172–180. Springer, Heidelberg (2007) Google Scholar
  12. 12.
    Son, B., Lee, Y.: Biometric Authentication System Using Reduced Joint Feature Vector of Iris and Face. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 513–522. Springer, Heidelberg (2005) Google Scholar
  13. 13.
    Gan, J., Liang, Y.: A Method for Face and Iris Feature Fusion in Identity Authentication. IJCSNS, 6 ( 2B) (2006) Google Scholar
  14. 14.
    Lowe, David, G.: Object recognition from local scale invariant features. In: International Conference on Computer Vision, Corfu, Greece, pp. 1150–1157 (September 1999) Google Scholar
  15. 15.
    Bicego, M., Lagorio, A., Grosso, E., Tistarelli, M.: On the use of SIFT features for face authentication. In: Proc. of Int. Workshop on Biometrics, in association with CVPR (2006) Google Scholar
  16. 16.
    Park, U., Pankanti, S., Jain, A.K.: Fingerprint Verification using SIFT Features. In: Proc. of SPIE Defense and Security Symposium, Orlando, Florida (2008) Google Scholar
  17. 17.
    Ross, A., Shah, S.: Segmenting Non-ideal Irises Using Geodesic Active Contours. In: Proc. of Biometrics Symposium (BSYM), Baltimore, USA (2006) Google Scholar
  18. 18.
    http://www.cbsr.ia.ac.cn/english/IrisDatabase.aspGoogle Scholar
  19. 19.
    http://www.equinoxsensors.com/products/HID.htmlGoogle Scholar
  20. 20.
    Wu, X., Wang, K., Zhang, D., Qi, N.: Combining left and right irises for personal authentication. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 145–152. Springer, Heidelberg (2007) Google Scholar
  21. 21.
    Matey, J.R., Naroditsky, O., Hanna, K., Kolczynski, R., LoIacono, D.J., Mangru, S., Tinker, M., Zappia, T.M., Zhao, W.Y.: Iris on the Move: Acquisition of Images for Iris Recognition in Less Constrained Environments. Proc. of the IEEE 94(11), 1936–1947 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ajita Rattani
    • 1
  • Massimo Tistarelli
    • 1
  1. 1.Computer Vision LaboratoryUniversity of SassariAlgheroItaly

Personalised recommendations