A First Approach to Contact-Based Biometrics for User Authentication

  • Athanasios Vogiannou
  • Konstantinos Moustakas
  • Dimitrios Tzovaras
  • Michael G. Strintzis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)


This paper presents the concept of contact-based biometric features, which are behavioral biometric features related to the dynamic manipulation of objects that exist in the surrounding environment. The motivation behind the proposed features derives from activity-related biometrics and the extension of them to activities involving objects. The proposed approach exploits methods from different scientific fields, such as virtual reality, collision detection and pattern classification and is applicable to user authentication systems. Experimental results in a data-set of 20 subjects show that the introduced features comprise a very efficient and interesting approach in the research of biometric features.


User Authentication Hand Posture Collision Detection False Acceptance Rate Biometric Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Qazi, F.A.: A survey of biometric authentication systems. In: Security and Management, pp. 61–67 (2004)Google Scholar
  2. 2.
    Xiao, Q.: Security issues in biometric authentication. In: Information Assurance Workshop, IAW 2005, June 2005, pp. 8–13 (2005)Google Scholar
  3. 3.
    Jain, A., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 4–20 (2004)Google Scholar
  4. 4.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Chowhan, S., Shinde, G.: Iris biometrics recognition application in security management, vol. 1, pp. 661–665 (2008)Google Scholar
  6. 6.
    Chang, K.I., Bowyer, K.W., Flynn, P.J.: An evaluation of multimodal 2d+3d face biometrics. IEEE Trans. Pattern Analysis and Machine Intelligence 27(4), 619–624 (2005)Google Scholar
  7. 7.
    Boulgouris, N., Chi, Z.: Gait recognition using radon transform and linear discriminant analysis. IEEE Transactions on Image Processing 16(3), 731–740 (2007)Google Scholar
  8. 8.
    Delac, K., Grgic, M.: A survey of biometric recognition methods. In: Electronics in Marine, 2004. Proceedings Elmar 2004. 46th International Symposium, pp. 184–193 (2004)Google Scholar
  9. 9.
    Moustakas, K., Strintzis, M., Tzovaras, D., Carbini, S., Bernier, O., Viallet, J., Raidt, S., Mancas, M., Dimiccoli, M., Yagci, E., Balci, S., Leon, E.: Masterpiece: Physical Interaction and 3D Content-based Search in VR Applications. IEEE Multimedia 13(3), 92–100 (2006)Google Scholar
  10. 10.
    Tzovaras, D., Nikolakis, G., Fergadis, G., Malasiotis, S., Stavrakis, M.: Design and Implementation of Haptic Virtual Environments for the Training of the Visually Impaired. IEEE Transactions on Neural Systems and Rehabilitation Engineering 12(2), 266–278 (2004)Google Scholar
  11. 11.
    Kale, A., Cuntoor, N., Chellappa, R.: A framework for activity specific human recognition. In: International Conference on Acoustics, Speech and Signal Processing, Orlando, FL (2002)Google Scholar
  12. 12.
    Kukula, E., Elliott, S.: Implementation of hand geometry: an analysis of user perspectives and system performance. IEEE Aerospace and Electronic Systems Magazine 21, 3–9 (2006)Google Scholar
  13. 13.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4) (2006)Google Scholar
  14. 14.
    Ren, Y., Chua, C.S., Ho, Y.K.: Color based tracking by adaptive modeling. In: 7th International Conference on Control, Automation, Robotics and Vision, ICARCV 2002., vol. 3, pp. 1597–1602 (2002)Google Scholar
  15. 15.
    Kim, Y.J., Lin, M.C., Manocha, D.: Incremental penetration depth estimation between convex polytopes using dual-space expansion. IEEE Transactions on Visualization and Computer Graphics 10(2), 152–163 (2004)Google Scholar
  16. 16.
    Larsen, E., Gottschalk, S., Lin, M., Manocha, D.: Fast distance queries with rectangular swept sphere volumes, vol. 4, pp. 3719–3726 (2000)Google Scholar
  17. 17.
    Lin, M.C., Canny, J.F.: A fast algorithm for incremental distance calculation, pp. 1008–1014 (1991)Google Scholar
  18. 18.
    Lin, M.C., Gottschalk, S.: Collision detection between geometric models: A survey. In: IMA Conference on Mathematics of Surfaces, pp. 37–56 (1998)Google Scholar
  19. 19.
    van den Bergen, G.: Collision Detection in Interactive 3D Environments. Morgan Kaufmann, San Francisco (2003)Google Scholar
  20. 20.
    Ericson, C.: Real-Time Collision Detection. Morgan Kaufmann, San Francisco (2004)Google Scholar
  21. 21.
    Thomas, F., Torras, C.: 3D collision detection: A survey. Computers and Graphics 25, 269–285 (2001)Google Scholar
  22. 22.
    Teschner, M., Kimmerle, S., Zachmann, G., Heidelberger, B., Raghupathi, L., Fuhrmann, A., Cani, M.P., Faure, F., Magnetat-Thalmann, N., Strasser, W.: Collision detection for deformable objects. In: Eurographics State-of-the-Art Report (EG-STAR), pp. 119–139. Eurographics Association (2004)Google Scholar
  23. 23.
    van den Bergen, G.: Efficient collision detection of complex deformable models using AABB trees. Journal on Graphics Tools 2 (1997)Google Scholar
  24. 24.
    Gavrila, D.M.: The visual analysis of human movement: a survey. Computer Vision and Image Understanding 73(1), 82–98 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Athanasios Vogiannou
    • 1
    • 2
  • Konstantinos Moustakas
    • 2
  • Dimitrios Tzovaras
    • 2
  • Michael G. Strintzis
    • 1
    • 2
  1. 1.Electrical & Computer Engineering DepartmentAristotle University of ThessalonikiGreece
  2. 2.Informatics and Telematics Institute, CERTHGreece

Personalised recommendations