Advertisement

Modelling FRR of Biometric Verification Systems Using the Template Co-update Algorithm

  • Luca Didaci
  • Gian Luca Marcialis
  • Fabio Roli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)

Abstract

The decrease of representativeness of available templates during time is due to the large intra-class variations characterizing biometrics (e.g. faces). This requires the design of algorithms able to make biometric verification systems adaptive to such variations. Among others, the template co-update algorithm, which uses the mutual help of two complementary biometric matchers, has shown promising experimental results. The present paper is aimed to describe a theoretical model able to explain the co-update behaviour. In particular, the focus is on the relationships between error rate and gallery size increase. Preliminary experimental results are shown to validate the proposed model.

Keywords

Face Recognition Verification System Fingerprint Image False Rejection Rate Verification Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Li, S.Z., Jain, A.K. (eds.): Handbook of face recognition. Springer, Heidelberg (2005) Google Scholar
  2. 2.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of fingerprint recognition. Springer, Heidelberg (2003) Google Scholar
  3. 3.
    Uludag, U., Ross, A., Jain, A.K.: Biometric template selection and update: a case study in fingerprints. Pattern Recognition 37(7), 1533–1542 (2004) Google Scholar
  4. 4.
    Jiang, X., Ser, W.: Online Fingerprint Template Improvement. IEEE Trans. PAMI 24(8), 1121–1126 (2002) Google Scholar
  5. 5.
    Ryu, C., Hakil, K., Jain, A.: Template adaptation based fingerprint verification. In: Proc. of ICPR, Hong Kong, vol. 4, pp. 582–585 (2006) Google Scholar
  6. 6.
    Roli, F., Marcialis, G.L.: Semi-supervised PCA-based face recognition using self-training. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 560–568. Springer, Heidelberg (2006) Google Scholar
  7. 7.
    Roli, F., Didaci, L., Marcialis, G.L.: Template co-update in multimodal biometric systems. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 1194–1202. Springer, Heidelberg (2007) Google Scholar
  8. 8.
    Roli, F., Didaci, L., Marcialis, G.L.: Adaptive biometric systems that can improve with use. In: Ratha, N., Govindaraju, V. (eds.) Advances in Biometrics: Sensors, Systems and Algorithms, pp. 447–471. Springer, Heidelberg (2008) Google Scholar
  9. 9.
    Rattani, A., Marcialis, G.L., Roli, F.: Capturing large intra-class variations of biometric data by template co-updating. In: IEEE Workshop on Biometrics, Int. Conf. on Vision and Pattern Recognition CVPR 2008, Anchorage, Alaska, USA (2008) (in press) Google Scholar
  10. 10.
    Didaci, L., Marcialis, G.L., Roli, F.: A Theoretical and Experimental Analysis of Template Co-update in Biometric Verification Systems. In: da Vitora-Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 765–774. Springer, Heidelberg (2008) Google Scholar
  11. 11.
    Ross, A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer, Heidelberg (2006) Google Scholar
  12. 12.
  13. 13.
    Jain, A.K., Hong, L., Bolle, R.: On-line Fingerprint Verification. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(4), 302–314 (1997) Google Scholar
  14. 14.
    Turk, M., Pentland, A.: Eigenfaces for Face Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Luca Didaci
    • 1
  • Gian Luca Marcialis
    • 1
  • Fabio Roli
    • 1
  1. 1.Dept. of Electrical and Electronic Eng.University of CagliariItaly

Personalised recommendations