Advertisement

Overview of the Multiple Biometrics Grand Challenge

  • P. Jonathon Phillips
  • Patrick J. Flynn
  • J. Ross Beveridge
  • W. Todd Scruggs
  • Alice J. O’Toole
  • David Bolme
  • Kevin W. Bowyer
  • Bruce A. Draper
  • Geof H. Givens
  • Yui Man Lui
  • Hassan Sahibzada
  • Joseph A. ScallanIII
  • Samuel Weimer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)

Abstract

The goal of the Multiple Biometrics Grand Challenge (MBGC) is to improve the performance of face and iris recognition technology from biometric samples acquired under unconstrained conditions. The MBGC is organized into three challenge problems. Each challenge problem relaxes the acquisition constraints in different directions. In the Portal Challenge Problem, the goal is to recognize people from near-infrared (NIR) and high definition (HD) video as they walk through a portal. Iris recognition can be performed from the NIR video and face recognition from the HD video. The availability of NIR and HD modalities allows for the development of fusion algorithms. The Still Face Challenge Problem has two primary goals. The first is to improve recognition performance from frontal and off angle still face images taken under uncontrolled indoor and outdoor lighting. The second is to improve recognition performance on still frontal face images that have been resized and compressed, as is required for electronic passports. In the Video Challenge Problem, the goal is to recognize people from video in unconstrained environments. The video is unconstrained in pose, illumination, and camera angle. All three challenge problems include a large data set, experiment descriptions, ground truth, and scoring code.

References

  1. 1.
    Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face-recognition algorithms. Image and Vision Computing Journal 16(5), 295–306 (1998)Google Scholar
  2. 2.
    Phillips, P.J., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. PAMI 22, 1090–1104 (2000)Google Scholar
  3. 3.
    Phillips, P.J., Grother, P.J., Micheals, R.J., Blackburn, D.M., Tabassi, E., Bone, J.M.: Face recognition vendor test 2002: Evaluation report. National Institute of Standards and Technology, Tech. Rep. NISTIR 6965 (2003), http://www.frvt.org
  4. 4.
    Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 947–954 (2005)Google Scholar
  5. 5.
    Phillips, P.J., Scruggs, W.T., O’Toole, A.J., Flynn, P.J., Bowyer, K.W., Schott, C.L., Sharpe, M.: FRVT 2006 and ICE 2006 large-scale results, National Institute of Standards and Technology, Tech. Rep. NISTIR 7408 (2007), http://iris.nist.gov/
  6. 6.
    Phillips, P.J., Scruggs, W.T., O’Toole, A.J., Flynn, P.J., Bowyer, K.W., Schott, C.L., Sharpe, M.: FRVT 2006 and ICE 2006 large-scale results. IEEE Trans. PAMI (in Press)Google Scholar
  7. 7.
    Authenti-Corp, Iris recognition study 2006 (IRIS06), Authenti-Corp, Tech. Rep. version 0.40 (March 2007), http://www.authenti-corp.com/iris06/report/
  8. 8.
    International Biometric Group, Independent testing of iris recognition technology, International Biometric Group, Tech. Rep. (May 2005), http://www.ibgweb.com/reports/public/ITIRT.html
  9. 9.
    Phillips, P., Bowyer, K.W., Flynn, P.J., Liu, X., Scruggs, W.T.: The Iris Challenge Evaluation 2005. In: Second IEEE International Conference on Biometrics: Theory, Applications, and Systems (2008)Google Scholar
  10. 10.
    Newton, E.M., Phillips, P.J.: Meta-analysis of third-party evaluations of iris recognition. IEEE Trans. on SMC-A 39(1), 4–11 (2009)Google Scholar
  11. 11.
    Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image understanding for iris biometrics: a survey. Computer Vision and Image Understanding 110(2), 281–307 (2008)Google Scholar
  12. 12.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Surveys 35, 399–458 (2003)Google Scholar
  13. 13.
    O’Toole, A.J., Harms, J., Snow, S.L., Hurst, D.R., Pappas, M.R., Ayyad, J.H., Abdi, H.: A video database of moving faces and people. IEEE Trans. PAMI 27, 812–816 (2005)Google Scholar
  14. 14.
    Matey, J.R., Naroditsky, O., Hanna, K., Kolcynksi, R., LoIancono, D.J., Mangru, S., Tinker, M., Zappa, T.M., Zhao, W.Y.: Iris on the move: Acquisition of images for iris recognition in less constrained environments. Proceedings of the IEEE 94, 1936–1947 (2006)Google Scholar
  15. 15.
    ICAO New Technologies Working Group, ICAO Document 9303, Tech. Rep., http://www2.icao.int/en/MRTD/Pages/Doc9393.aspx

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • P. Jonathon Phillips
    • 1
  • Patrick J. Flynn
    • 2
  • J. Ross Beveridge
    • 3
  • W. Todd Scruggs
    • 4
  • Alice J. O’Toole
    • 5
  • David Bolme
    • 3
  • Kevin W. Bowyer
    • 2
  • Bruce A. Draper
    • 3
  • Geof H. Givens
    • 6
  • Yui Man Lui
    • 3
  • Hassan Sahibzada
    • 1
  • Joseph A. ScallanIII
    • 7
  • Samuel Weimer
    • 5
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Computer Science & Engineering DepartmentU. of Notre DameNotre DameUSA
  3. 3.Department of Computer ScienceColorado State U.Fort CollinsUSA
  4. 4.SAICArlingtonUSA
  5. 5.School of Behavioral and Brain SciencesThe U. of Texas at DallasRichardsonUSA
  6. 6.Department of StatisticsColorado State U.Fort CollinsUSA
  7. 7.Schafer Corp.ArlingtonUSA

Personalised recommendations