Advertisement

Performance and Computational Complexity Comparison of Block-Based Fingerprint Enhancement

  • Suksan Jirachaweng
  • Teesid Leelasawassuk
  • Vutipong Areekul
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)

Abstract

Performance and computational complexity comparisons of various block-based fingerprint enhancement schemes are tested and reported in this literature. Enhancement performance is evaluated by comparing equal error rates, which obtained by a proposed fingerprint matching algorithm using local and global features. Various enhancement methods are tested; i.e. three types of spatial Gabor filtering, short-time Fourier transform filtering, and discrete cosine transform filtering. These enhancement schemes also tested with various databases such as FVC2000, FVC2002, and FVC2004. Finally, computational complexity of enhancement implementation is analyzed and concluded.

Keywords

Fingerprint Enhancement Fingerprint Enhancement Performance Comparison Spatial-Domain/Frequency-Domain Fingerprint Enhancement Fingerprint Enhancement Computational Complexity 

References

  1. 1.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, Heidelberg (2003) Google Scholar
  2. 2.
    Hong, L., Wang, Y., Jain, A.K.: Fingerprint Image Enhancement: Algorithm and Performance Evaluation. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(8), 777–789 (1998) Google Scholar
  3. 3.
    Areekul, V., Watchareeruetai, U., Tantaratana, S.: Fast Separable Gabor Filter for Fingerprint Enhancement. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 403–409. Springer, Heidelberg (2004) Google Scholar
  4. 4.
    Areekul, V., Watchareeruetai, U., Suppasriwasuseth, K., Tantaratana, S.: Separable Gabor filter realization for fast fingerprint enhancement. In: Proc. Int. Conf. on Image Processing (ICIP 2005), pp. III-253–III-256 (2005) Google Scholar
  5. 5.
    Chikkerur, S., Cartwright, A.N., Govindaraju, V.: Fingerprint Enhancement Using STFT Analysis. Pattern Recognition 40, 198–211 (2007) Google Scholar
  6. 6.
    Jirachaweng, S., Areekul, V.: Fingerprint Enhancement Based on Discrete Cosine Transform. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 96–105. Springer, Heidelberg (2007) Google Scholar
  7. 7.
    Areekul, V., Suppasriwasuseth, K., Jirachawang, S.: The New Focal Point Localization for Fingerprint Registration. In: Proc. Int. Conf. on Image Pattern Recognition (ICPR 2006), vol. 4, pp. 497–500 (2006) Google Scholar
  8. 8.
    Leelasawassuk, T., Areekul, V.: Looped Minutiae Matching in Fingerprint Verification. In: Proceedings of International Workshop on Advanced Image Technology (IWAIT 2007), pp. 924–928 (2007) Google Scholar
  9. 9.
    Leelasawassuk, T.: Fingerprint Matching Using a Focal Point as a Reference Point. Master of Engineering Thesis, Department of Electrical Engineering, Kasetsart University, Thailand (2007) Google Scholar
  10. 10.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Suksan Jirachaweng
    • 1
  • Teesid Leelasawassuk
    • 1
  • Vutipong Areekul
    • 1
  1. 1.Kasetsart Signal & Image Processing Laboratory (KSIP Lab), Department of Electrical EngineeringKasetsart UniversityBangkokThailand

Personalised recommendations