Focal Point Detection Based on Half Concentric Lens Model for Singular Point Extraction in Fingerprint

  • Natthawat Boonchaiseree
  • Vutipong Areekul
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)


A focal point is a kind of singular points, closely related to a core point, which can be derived from curvature of fingerprint ridges and valleys. It is expected that the focal point is more reliable than the core point in case of low quality fingerprint. This paper proposes a new efficient focal point localization method based on a half concentric lens model. The half concentric lens window, with directional adaptive, accelerates convergence of a focal point localization process rapidly. Moreover, concentric lens similarity factor is introduced in order to measure orientation and stability of an extracted focal point. From experimental results, the proposed scheme is out-performed most of singular point detection schemes in literature in term of location accuracy and consistency. For computational complexity, algorithm requires average 75 millisecond execution-time from original fingerprint to a unique focal point.


Singular Point Focal Point Half Concentric Lens Concentric Lens’s Similarity Fingerprint Registration 


  1. 1.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, Heidelberg (2003) Google Scholar
  2. 2.
    Kawagoe, M., Tojo, A.: Fingerprint Pattern Classification. Pattern Recognition 17, 295–303 (1984) Google Scholar
  3. 3.
    Bazen, A.M., Gerez, S.H.: Systematic Methods for the Computation of the Directional Fields and Singular Points of Fingerprints. IEEE Trans. Pattern Anal. Machine Intell. 24, 905–919 (2002) Google Scholar
  4. 4.
    Park, C.H., Lee, J.J., Smith, M.T.J., Park, K.H.: Singular Point Detection by Shape Analysis of Directional Fields in Fingerprint. Pattern Recognition 39, 839–855 (2005) Google Scholar
  5. 5.
    Nilsson, K., Bigun, J.: Registration of Fingerprints by Complex Filtering and by 1D Projections of Orientation Images. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 171–183. Springer, Heidelberg (2005) Google Scholar
  6. 6.
    Hung, D.C.D., Huang, C.: A Model Optimized Singular Point Detection Algorithm for Fingerprint Images. In: Proc. Florida Artificial Intelligence Research Symposium (9th), pp. 444–448 (1996) Google Scholar
  7. 7.
    Rämö, P., Tico, M., Onnia, V., Saarinen, J.: Optimized Singular Point Detection Algorithm for Fingerprint Images. In: Proc. Int’l. Conf. Image Processing, vol. 3, pp. 242–245 (2001) Google Scholar
  8. 8.
    Liu, M., Jiang, X.: Kot. A.C.: Fingerprint Reference-Point Detection. EURASIP Journal on Applied Signal Processing, 498–509 (2005) Google Scholar
  9. 9.
    Liu, T., Zhang, C., Hao, P.: Fingerprint Reference Point Detection Based on Local Axial Symmetry. In: Proc. Int’l. Conf. Pattern Recognition, vol. I, pp. 1050–1053 (2006) Google Scholar
  10. 10.
    Rerkrai, K., Areekul, V.: A New Reference Point for Fingerprint Recognition. In: Proc. Int’l. Conf. Image Processing, vol. 2, pp. 499–502 (2000) Google Scholar
  11. 11.
    Areekul, V., Suppasriwasuseth, K., Jirachaweng, S.: The New Focal Point Localization Algorithm for Fingerprint Registration. In: Proc. Int’l. Conf. Pattern Recognition, vol. IV, pp. 497–500 (2006) Google Scholar
  12. 12.
    Areekul, V., Boonchaiseree, N.: Fast Focal Point Localization Algorithm for Fingerprint Registration. In: Proc. 3rd IEEE ICIEA, pp. 2089–2094 (2008) Google Scholar
  13. 13.
    Hong, L., Wang, Y., Jain, A.K.: Fingerprint Image Enhancement: Algorithm and Performance Evaluation. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(8), 777–789 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Natthawat Boonchaiseree
    • 1
  • Vutipong Areekul
    • 1
  1. 1.Kasetsart Signal & Image Processing Laboratory (KSIP Lab), Department of Electrical EngineeringKasetsart UniversityBangkokThailand

Personalised recommendations