Advertisement

Synthesizing Frontal Faces on Calibrated Stereo Cameras for Face Recognition

  • Kin-Wang Cheung
  • Jiansheng Chen
  • Yiu-Sang Moon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)

Abstract

Current automatic face recognition systems often require users to face towards the capturing camera. To extent these systems for user non-intrusive application scenarios such as video surveillance, we propose a stereo camera configuration to synthesize a frontal face image from two non-frontal face images. After the head pose has been estimated, a frontal face image is synthesized using face warping and view morphing techniques. Face identification experiments reveal that using the synthetic frontal images can achieve comparable performance with real frontal face images.

Keywords

Face Recognition Frontal Face Stereo Camera Virtual View Active Shape Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Murphy-Chutorian, E., Trivedi, M.: Head pose estimation in computer vision: A survey. IEEE Trans. on PAMI (accepted)Google Scholar
  2. 2.
    Pentland, A., Moghaddam, B., et al.: View-based and modular eigenspaces for face recognition. In: CVPR, pp. 84–91. IEEE Press, Los Alamitos (1994)Google Scholar
  3. 3.
    Beymer, D., Poggio, T.: Face recognition from one example view. In: ICCV, pp. 500–507. IEEE Press, Los Alamitos (1995)Google Scholar
  4. 4.
    Ashraf, A., Lucey, S., et al.: Learning patch correspondences for improved viewpoint invariant face recognition. In: CVPR, pp. 1–8. IEEE Press, Los Alamitos (2008)Google Scholar
  5. 5.
    Gross, R., Matthews, I., et al.: Eigen light-fields and face recognition across pose. In: Fifth IEEE Int. Conf. on FG, pp. 1–7. IEEE Press, Los Alamitos (2002)Google Scholar
  6. 6.
    Blanz, V., Grother, P., et al.: Face recognition based on frontal views generated from non-frontal images. In: CVPR, vol. 2, pp. 454–461. IEEE Press, Los Alamitos (2005)Google Scholar
  7. 7.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: SIGGRAPH, pp. 187–194. ACM Press, New York (1999)Google Scholar
  8. 8.
    Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. on PAMI 19(7), 696–710 (1997)Google Scholar
  9. 9.
    Zhao, W., Chellappa, R., et al.: Discriminant analysis of principal components for face recognition. In: Third IEEE Int. Conf. on FG, pp. 336–341. IEEE Press, Los Alamitos (1998)Google Scholar
  10. 10.
    Li, C., Su, G., et al.: Frontal face synthesis based on multiple pose-variant images for face recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 948–957. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    Seitz, S.M., Dyer, C.R.: View morphing. In: SIGGRAPH, pp. 21–30. ACM Press, New York (1996)Google Scholar
  12. 12.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: ICCV, pp. 666–673. IEEE Press, Los Alamitos (1999)Google Scholar
  13. 13.
    Agrawal, A., Raskar, R., et al.: Edge suppression by gradient field transformation using cross-projection tensors. In: CVPR, vol. 2, pp. 2301–2308. IEEE Press, Los Alamitos (2006)Google Scholar
  14. 14.
    Hsu, R., Abdel-Mottaleb, M., et al.: Face detection in color images. IEEE Trans. on PAMI 24(5), 696–706 (2002)Google Scholar
  15. 15.
    Smeraldi, F., Bigun, J.: Retinal vision applied to facial features detection and face authentication. Pattern Recognition Letters 23, 463–475 (2002)Google Scholar
  16. 16.
    Cootes, T., Cooper, D., et al.: Active shape models - their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)Google Scholar
  17. 17.
    Phillips, P.J., Wechsler, H., et al.: The feret database and evaluation procedure for face recognition algorithms. Image and Vision Computing J. 16(5), 295–306 (1998)Google Scholar
  18. 18.
    Delac, K., Grgic, M., et al.: Independent comparative study of pca, ica, and lda on the feret data set. Int. J. of IST 15(5), 252–260 (2006)Google Scholar
  19. 19.
    Gao, W., Cao, B., et al.: The cas-peal large-scale chinese face database and baseline evaluations. IEEE Trans. on SMC (Part A) 38(1), 149–161 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kin-Wang Cheung
    • 1
  • Jiansheng Chen
    • 1
  • Yiu-Sang Moon
    • 1
  1. 1.The Department of Computer Science and EngineeringThe Chinese University of Hong Kong, Shatin, N.T.Hong Kong

Personalised recommendations