Advertisement

3D Face Recognition Using Joint Differential Invariants

  • Marinella Cadoni
  • Manuele Bicego
  • Enrico Grosso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)

Abstract

Stemming from a sound mathematical framework dating back to the beginning of the 20th century, this paper introduces a novel approach for 3D face recognition. The proposed technique is based on joint differential invariants, projecting a 3D shape in a 9-dimensional space where the effect of rotation and translation is removed. As a consequence, the matching between two different 3D samples can be directly performed in the invariant space. Thus the matching score can be effectively used to detect surfaces or parts of surfaces characterised by similar when not identical 3D structure. The paper details an efficient procedure for the generation of the invariant signature in the 9-dimensional space, carefully discussing a number of significant implications related to the application of the mathematical framework to the discrete, non-rigid case of interest. Experimental evaluation of the proposed approach is performed over the widely known 3D_RMA database, comparing results to the well established Iterative Closest Point (ICP)-based matching approach.

Keywords

Biometrics 3D Face Recognition Invariants 

References

  1. 1.
    Bowyer, K., Chang, K., Flynn, P.: A survey of approaches and challenges in 3d and multi-modal 2D+3D face recognition. Computer Vision and Image Understanding 101(1), 1–15 (2006)Google Scholar
  2. 2.
    Chang, K., Bowyer, K., Flynn, P.: An evaluation of multimodal 2d+3d face biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 619–624 (2005)Google Scholar
  3. 3.
    Gokberk, B., Akarun, L.: Comparative analysis of decision-level fusion algorithms for 3d face recognition. In: Proc. of Int. Conf. on Pattern Recognition, pp. 1018–1021 (2006)Google Scholar
  4. 4.
    Besl, P., McKay, N.: A method for registration of 3D shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14, 239–256 (1992)Google Scholar
  5. 5.
    Chang, K., Bowyer, K., Flynn, P.: Adaptive rigid miltiregion selection for handling expression variations in 3D face recognition. In: IEEE Workshop on FRGC (2005)Google Scholar
  6. 6.
    Irfanoglu, M., Gokberk, B., Akarun, L.: 3D shape-based face recognition using automatically registered facial surfaces. In: Proc. of Int. Conf. on Pattern Recognition, pp. 183–186 (2004)Google Scholar
  7. 7.
    Lu, X., Jain, A.: Deformation analysis for 3d face matching. In: Proc. Int. Workshop on Applications of Computer Vision, pp. 99–104 (2005)Google Scholar
  8. 8.
    Lu, X., Jain, A., Colbry, D.: Matching 2.5D Face Scans to 3D Models. IEEE Trans. on Pattern Analysis and Machine Intelligence 28, 31–43 (2006)Google Scholar
  9. 9.
    Beumier, C., Acheroy, M.: Automatic 3d face authentication. Image and Vision Computing 18(4), 315–321 (2000)Google Scholar
  10. 10.
    Olver, P.J.: Joint Invariants Signatures. Found. Comput. Math. 1, 3–67 (2001)Google Scholar
  11. 11.
    Olver, P.J.: A survey of moving frames. In: Li, H., J. Olver, P., Sommer, G. (eds.) IWMM-GIAE 2004. LNCS, vol. 3519, pp. 105–138. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Cartan, É.: La Méthode du Repère Mobile, la Théorie des Groups Continue, et les Espaces Géneralisés. Hermann, Paris, France (1935)Google Scholar
  13. 13.
    Cadoni, M.I., Chimienti, A., Nerino, R.: Automatic Coarse Registration by Invariant Features. In: The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST (2006)Google Scholar
  14. 14.
    Do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)Google Scholar
  15. 15.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry, 2nd revised edn., pp. 99–105. Springer, Heidelberg (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marinella Cadoni
    • 1
  • Manuele Bicego
    • 1
    • 2
  • Enrico Grosso
    • 1
  1. 1.Computer Vision Laboratory, DEIRUniversity of SassariItaly
  2. 2.Computer Science Dept.University of VeronaItaly

Personalised recommendations