Local Gabor Binary Pattern Whitened PCA: A Novel Approach for Face Recognition from Single Image Per Person

  • Hieu V. Nguyen
  • Li Bai
  • Linlin Shen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)

Abstract

One major challenge for face recognition techniques is the difficulty of collecting image samples. More samples usually mean better results but also more effort, time, and thus money. Unfortunately, many current face recognition techniques rely heavily on the large size and representativeness of the training sets, and most methods suffer degraded performance or fail to work if there is only one training sample per person available. This so-called “Single Sample per Person” (SSP) situation is common in face recognition. To resolve this problem, we propose a novel approach based on a combination of Gabor Filter, Local Binary Pattern and Whitened PCA (LGBPWP). The new LGBPWP method has been successfully implemented and evaluated through experiments on 3000+ FERET frontal face images of 1196 subjects. The results show the advantages of our method - it has achieved the best results on the FERET database. The established recognition rates are 98.1%, 98.9%, 83.8% and 81.6% on the fb, fc, dup I, and dup II probes, respectively, using only one training sample per person.

Keywords

Gabor Wavelet Local Binary Pattern Whitening PCA Feature Selection Face Recognition 

References

  1. 1.
    Chellappa, R., Wilson, C.L., Sirohey, S., et al.: Human and machine recognition of faces: a survey. Proceedings of the IEEE 83(5), 705–740 (1995)Google Scholar
  2. 2.
    Adini, Y., Moses, Y., Ullman, S.: Face Recognition: The Problem of Compensating for Changes in Illumination Direction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 721–732 (1997)Google Scholar
  3. 3.
    Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher lineardiscriminant model for face recognition. IEEE Transactions on Image Processing 11(4), 467–476 (2002)Google Scholar
  4. 4.
    Swets, D.L., Weng, J.J.: Using Discriminant Eigenfeatures for Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 831–836 (1996)Google Scholar
  5. 5.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2037–2041 (2006)Google Scholar
  6. 6.
    Ji, Q.(IEEE Senior Member), Zou, J.(IEEE Member), Nagy, G.(IEEE Fellow): A comparative study of local matching approach for face recognition. IEEE Transactions on Image Processing 16, 2617–2628 (2007)Google Scholar
  7. 7.
    Shan, S., Gao, W., Chang, Y., Cao, B., Yang, P.: Review the strength of Gabor features for face recognition from the angle of its robustness to mis-alignment. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 1 (2004)Google Scholar
  8. 8.
    Wiskott, L., Fellous, J.M., Krüger, N., von der Malsburg, C.: Face Recognition by Elastic Bunch Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 775–779 (1997)Google Scholar
  9. 9.
    Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local Gabor Binary Pattern Histogram Sequence (LGBPHS): A Novel Non-Statistical Model for Face Representation and Recognition. In: Proc. ICCV, pp. 786–791 (2005)Google Scholar
  10. 10.
    Zhang, W., Shan, S., Chen, X., Gao, W.: Local Gabor Binary Patterns Based On Mutual Information For Face Recognition. International Journal of Image and Graphics 7(4), 777–793 (2007)Google Scholar
  11. 11.
    Tan, X., Triggs, B., Vision, M.: Fusing Gabor and LBP Feature Sets for Kernel-Based Face Recognition. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, p. 235. Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Deng, W., Hu, J., Guo, J.: Gabor-Eigen-Whiten-Cosine: A Robust Scheme for Face Recognition. In: Zhao, W., Gong, S., Tang, X. (eds.) AMFG 2005. LNCS, vol. 3723, p. 336. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 971–987 (2002)Google Scholar
  14. 14.
    Etcoff, N., Masoiu, N., Oliyide, O., Pentland, A., Starner, T., Turk, M.: Experiments with eigenfaces. In: Proc. Looking at People Workshop Int’l. Joint Conf. Artifical Intelligence (1993)Google Scholar
  15. 15.
    Sung, K.K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 39–51 (1998)Google Scholar
  16. 16.
    Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 696–710 (1997)Google Scholar
  17. 17.
    Liu, C.: Gabor-Based Kernel PCA with Fractional Power Polynomial Models for Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 572–581 (2004)Google Scholar
  18. 18.
    Zhang, B., Shan, S., Chen, X., Gao, W.: Histogram of Gabor Phase Patterns (HGPP): A Novel Object Representation Approach for Face Recognition. IEEE Transactions on Image Processing 16(1), 57 (2007)Google Scholar
  19. 19.
    Bai, L., Shen, L.: InfoBoost for Selecting Discriminative Gabor Features. In: Gagalowicz, A., Philips, W. (eds.) CAIP 2005. LNCS, vol. 3691, pp. 423–432. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Shen, L., Bai, L.: MutualBoost learning for selecting Gabor features for face recognition. Pattern Recognition Letters 27(15), 1758–1767 (2006)Google Scholar
  21. 21.
    Shan, S., Yang, P., Chen, X., Gao, W.: AdaBoost Gabor Fisher Classifier for Face Recognition. In: Zhao, W., Gong, S., Tang, X. (eds.) AMFG 2005. LNCS, vol. 3723, pp. 279–292. Springer, Heidelberg (2005)Google Scholar
  22. 22.
    Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The FERET database and evaluation procedure for face-recognition algorithms. Image and Vision Computing 16(5), 295–306 (1998)Google Scholar
  23. 23.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face Recognition with Local Binary Patterns. LNCS, pp. 469–481. Springer, Heidelberg (2004)Google Scholar
  24. 24.
    Shan, S., Zhang, W., Su, Y., Chen, X., Gao, W., FRJDL, I.C.T.I., CAS, B.: Ensemble of Piecewise FDA Based on Spatial Histograms of Local (Gabor) Binary Patterns for Face Recognition. In: Proceedings of the 18th international conference on pattern recognition, pp. 606–609 (2006)Google Scholar
  25. 25.
    Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1090–1104 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hieu V. Nguyen
    • 1
  • Li Bai
    • 1
  • Linlin Shen
    • 1
  1. 1.School of Computer ScienceUniversity of NottinghamNottinghamUK

Personalised recommendations