Face Age Classification on Consumer Images with Gabor Feature and Fuzzy LDA Method

  • Feng Gao
  • Haizhou Ai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)

Abstract

As we all know, face age estimation task is not only challenging for computer, but even hard for human in some cases, however, coarse age classification such as classifying human face as baby, child, adult or elder people is much easier for human. In this paper, we try to dig out the potential age classification power of computer on faces from consumer images which are taken under various conditions. Gabor feature is extracted and used in LDA classifiers. In order to solve the intrinsic age ambiguity problem, a fuzzy version LDA is introduced through defining age membership functions. Systematic comparative experiment results show that the proposed method with Gabor feature and fuzzy LDA can achieve better age classification precision in consumer images.

Keywords

Age classification Gabor feature membership functions fuzzy LDA 

References

  1. 1.
    Suo, J., Min, F., Zhu, S., Shan, S., Chen, X.: A Multi-Resolution Dynamic Model for Face Aging Simulation. In: CVPR 2007 (2007) Google Scholar
  2. 2.
    Geng, X., Zhou, Z.-H., Smith-Miles, K.: Automatic Age Estimation Based on Facial Aging Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(12) (December 2007) Google Scholar
  3. 3.
    Wang, J., Shang, Y., Su, G., Lin, X.: Age simulation for face recognition. In: ICPR 2006 (2006) Google Scholar
  4. 4.
    Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: Image-Based Human Age Estimation by Manifold Learning and Locally Adjusted Robust Regression. IEEE Transactions on Image Processing 17(7) (July 2008) Google Scholar
  5. 5.
    Fu, Y., Huang, T.S.: Human Age Estimation With Regression on Discriminative Aging Manifold. IEEE Transactions on Multimedia 10(4) (June 2008) Google Scholar
  6. 6.
    Yang, Z., Ai, H.: Demographic classification with local binary patterns. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 464–473. Springer, Heidelberg (2007) Google Scholar
  7. 7.
    Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.W.: A Study of Face Recognition as People Age. In: ICCV 2007 (2007) Google Scholar
  8. 8.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004) Google Scholar
  9. 9.
    Liu, C., Wechsler, H.: Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition. IEEE Transactions on Image Processing 11(4) (April 2002) Google Scholar
  10. 10.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064. Springer, Heidelberg (1996) Google Scholar
  11. 11.
    He, X., Niyogi, P.: Locality Preserving Projections. In: NIPS 2004 (2004) Google Scholar
  12. 12.
    Schapire, S.: Improved Boosting Algorithms Using Confidence-rated Predictions. Machine Learning 37(3), 297–336 (1999) Google Scholar
  13. 13.
    Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995) Google Scholar
  14. 14.
    Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Features. In: CVPR 2001 (2001) Google Scholar
  15. 15.
    Zhuang, L., Ai, H., Xu, G.: Training Support Vector Machines for Video Based Face Recognition. In: International Conf. on Image and Graphics. SPIE, vol. 4875, pp. 737–743 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Feng Gao
    • 1
  • Haizhou Ai
    • 1
  1. 1.Computer Science and Technology DepartmentTsinghua UniversityBeijingChina

Personalised recommendations