Empirical Evidence for Correct Iris Match Score Degradation with Increased Time-Lapse between Gallery and Probe Matches

  • Sarah E. Baker
  • Kevin W. Bowyer
  • Patrick J. Flynn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)


We explore the effects of time lapse on iris biometrics using a data set of images with four years time lapse between the earliest and most recent images of an iris (13 subjects, 26 irises, 1809 total images). We find that the average fractional Hamming distance for a match between two images of an iris taken four years apart is statistically significantly larger than the match for images with only a few months time lapse between them. A possible implication of our results is that iris biometric enrollment templates may undergo aging and that iris biometric enrollment may not be “once for life.” To our knowledge, this is the first and only experimental study of iris match scores under long (multi-year) time lapse.


Iris biometrics enrollment template template aging time-lapse match distribution stability 


  1. 1.
    Daugman, J.: How Iris Recognition Works. IEEE Trans. Circuits and Sys. for Video Tech. 14(1), 21–30 (2004)Google Scholar
  2. 2.
    LG, (accessed, August 2008)
  3. 3.
    Thornton, J., Savvides, M., Kumar, V.: A Bayesian Approach to Deformed Pattern Matching of Iris Images. IEEE Trans. Pattern Anal. and Mach. Intell. 29(4), 596–606 (2007)Google Scholar
  4. 4.
    Miyazawa, K., Ito, K., Aoki, T., Kobayashi, K., Nakajima, H.: An Effective Approach for Iris Recognition Using Phase-Based Image Matching. IEEE Trans. Pattern Anal. and Mach. Intell. 30(10), 1741–1756 (2008)Google Scholar
  5. 5.
    Monro, D., Rakshit, S., Zhang, D.: DCT-Based Iris Recognition. IEEE Trans. Pattern Anal. and Mach. Intell. 29(4), 586–595 (2007)Google Scholar
  6. 6.
    Liu, X., Bowyer, K., Flynn, P.: Experiments with an improved iris segmentation algorithm. In: Fourth IEEE Workshop on Automatic Identification Technologies, Oct. 2005, pp. 118–123 (2005)Google Scholar
  7. 7.
    Liu, X.: Optimizations in Iris Recognition. PhD Dissertation, University of Notre Dame (2006)Google Scholar
  8. 8.
    National Institute of Standards and Technology. Iris Challenge Evaluation (2006)
  9. 9.
    Hollingsworth, K., Bowyer, K., Flynn, P.: The Best Bits in an Iris Code. IEEE Trans. Pattern Anal. and Mach. Intell (in press)Google Scholar
  10. 10.
    Phillips, J., Bowyer, K., Flynn, P., Liu, X., Scruggs, T.: The Iris Challenge Evaluation 2005. In: 2008 IEEE Conf. on Biometrics: Theory, Applications, and Systems,Google Scholar
  11. 11.
    Tome-Gonzalez, P., Alonso-Fernandez, F., Ortega-Garcia, J.: On the Effects of Time Variability in Iris Recognition. In: 2008 IEEE Conf. on Biometrics: Theory, Applications and Systems (2008)Google Scholar
  12. 12.
    Daugman, J.: New Methods in Iris Recognition. IEEE Trans. Sys., Man, and Cyber. 37(5), 1167–1175 (2007)Google Scholar
  13. 13.
    Hollingsworth, K., Bowyer, K., Flynn, P.: Pupil Dilation Degrades Iris Biometric Performance. In: Computer Vision and Image Understanding (in press)Google Scholar
  14. 14.
    Bowyer, K.W., Hollingsworth, K.P., Flynn, P.J.: Image Understanding for Iris Biometrics: A Survey. Computer Vision and Image Understanding 110(2), 281–307 (2008)Google Scholar
  15. 15.
    Ring, S., Bowyer, K.: Detection of Iris Texture Distortions by Analyzing Iris Code Matching Results. In: IEEE Conf. on Biometrics: Theory, Applications, and Systems (2008)Google Scholar
  16. 16.
    Kalka, N., Zui, J., Schmid, N., Cukic, B.: Image Quality Assessment for Iris Biometric. SPIE 6202: Biometric Technology for Human Identification III, D1–D11 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sarah E. Baker
    • 1
  • Kevin W. Bowyer
    • 1
  • Patrick J. Flynn
    • 1
  1. 1.University of Notre DameUSA

Personalised recommendations