Advertisement

An Automated Video-Based System for Iris Recognition

  • Yooyoung Lee
  • P. Jonathon Phillips
  • Ross J. Micheals
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)

Abstract

We have successfully implemented a Video-based Automated System for Iris Recognition (VASIR), evaluating its successful performance on the MBGC dataset. The proposed method facilitates the ultimate goal of automatically detecting an eye area, extracting eye images, and selecting the best quality iris image from video frames. The selection method’s performance is evaluated by comparing it to the selection performed by humans. Masek’s algorithm was adapted to segment and normalize the iris region. Encoding the iris pattern and then completing the matching followed this stage. The iris templates from video images were compared to pre-existing still iris images for the purpose of the verification. This experiment has shown that even under varying illumination conditions, low quality, and off-angle video imagery, that iris recognition is feasible. Furthermore, our study showed that in practice an automated best image selection is nearly equivalent to human selection.

Keywords

Biometrics Iris recognition Eye detection Image quality measurement VASIR Iris segmentation 

References

  1. 1.
    Multiple Biometric Grand Challenge, http://face.nist.gov/mbgc/ Google Scholar
  2. 2.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 151–173 (2004) Google Scholar
  3. 3.
    Lienhart, R., Maydt, J.: An Extended Set of Haar-like Features for Rapid Object Detection. IEEE International Conference on Image Processing, vol. 1, pp. 900–903 (2002) Google Scholar
  4. 4.
    Intel Open Source Computer Vision Library, v1.0 (2006), http://sourceforge.net/projects/opencvlibrary/ Google Scholar
  5. 5.
    Castrillón-Santana, M., Déeniz-Suárez, O., Antón-Canalís, L., Lorenzo-Navarro, J.: Face and Facial Feature Detection Evaluation. In: International Conference on Computer Vision Theory and Applications (2008) Google Scholar
  6. 6.
    Castrillón-Santana, M., Déeniz-Suárez, O., Tejera, M.H., Artal, C.G.: ENCARA2: Real-time detection of multiple faces at different resolutions in video streams. Journal of Visual Communication and Image Representation, 130–140 (2007) Google Scholar
  7. 7.
    Reimondo, A.: Haar cascades repository (2007), http://alereimondo.no-ip.org/OpenCV/34 Google Scholar
  8. 8.
    Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image Understanding for Iris Biometrics: a Survey. Computer Vision and Image Understanding 110(2), 281–307 (2008) Google Scholar
  9. 9.
    Beveridge, J.R., Givens, G.H., Phillips, P.J., Draper, B.A., Yui Man Lui, C.: Focus on Quality, Predicting FRVT 2006 Performance. In: 8th IEEE International Conference on Automatci Face and Gesture Recogniton, FG (2008) Google Scholar
  10. 10.
    Masek, L.: Recognition of Human Iris Patterns for Biometric Identification, The University of Western Australia, http://www.csse.uwa.edu.au/~pk/studentprojects/libor/ Google Scholar
  11. 11.
    Phillips, J., Bowyer, K., Flynn, P., Liu, X., Scruggs, T.: The Iris Challenge Evaluation 2005. In: IEEE 2nd International Conference on Biometrics Theory, Applications and Systems (2008) Google Scholar
  12. 12.
    Richard, P., Wildes, C.: Iris Recogniton: An Emerging Biometric Technology. Proceedings of the IEEE 85(9) (1997) Google Scholar
  13. 13.
    Daugman, J.G.: High Confidence Visual Recognition of Persons by a Test of statistical Independence. IEEE Transactions on Pattern Analysis and Machin Intelligence 15(11) (1993) Google Scholar
  14. 14.
    Yao, P., Li, J., Ye, X., Zhuang, Z., Li, B.: Iris Recognition Algorithm using Modified Log-Gabor Filters. In: Proceedings of International Conference on Pattern Recognition, pp. 461–464 (2006) Google Scholar
  15. 15.
    Daugman, J.G.: How iris recognition works. In: Proceedings of International Conference on Image Processing, vol. 1 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yooyoung Lee
    • 1
    • 2
  • P. Jonathon Phillips
    • 1
  • Ross J. Micheals
    • 1
  1. 1.NISTGaithersburgUSA
  2. 2.Department of Computer EngineeringChung-Ang UniversitySeoulKorea

Personalised recommendations