Iris Recognition Using 3D Co-occurrence Matrix

  • Wen-Shiung Chen
  • Ren-Hung Huang
  • Lili Hsieh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)


This paper presents a biometric recognition based on the iris of a human eye using gray-level co-occurrence matrix (GLCM). A new approach of GLCM, called 3D-GLCM, which is expanded from the original 2D-GLCM is proposed and used to extract the iris features. The experimental results show that the proposed approach gains an encouraging performance on the UBIRIS iris database. The recognition rate up to 99.65% can be achieved.


Personal Authentication Biometrics Iris Recognition Co-occurrence Matrix 


  1. 1.
    Miller, B.: Vital Signs of Identity. IEEE Spectrum 31, 22–30 (1994) Google Scholar
  2. 2.
    Daugman, J.G.: High Confidence Visual Recognition of Persons by a Test of Statistical Independence. IEEE Trans. Pattern Analysis and Machine Intell. 15, 1148–1161 (1993) Google Scholar
  3. 3.
    Wildes, R.P., et al.: A machine-Vision System for Iris Recognition. Machine Vision and Applications 9, 1–8 (1996) Google Scholar
  4. 4.
    Boles, W.W., Boashash, B.: A Human Identification Technique using Images of the Iris and Wavelet Transform. IEEE Trans. on Signal Processing 46, 1185–1188 (1998) Google Scholar
  5. 5.
    Zhu, Y., Tan, T., Wang, Y.: Biometric Personal Identification based on Iris Patterns. In: Proc. of Int. Conf. on Pattern Recognition, vol. II, pp. 801–804 (2000) Google Scholar
  6. 6.
    Ma, L., Wang, Y., Tan, T.: Iris Recognition using Circular Symmetric Filters. In: Proc. of Int. Conf. on Pattern Recognition, vol. II, pp. 414–417 (2002) Google Scholar
  7. 7.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Personal Identification based on Iris Texture Analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 25, 1519–1533 (2003) Google Scholar
  8. 8.
    Lim, S., Lee, K., Byeon, O., Kim, T.: Efficient Iris Recognition Through Improvement of Feature Vector and Classifier. ETRI Journal 23, 61–70 (2001) Google Scholar
  9. 9.
    Monro, D., Rakshit, M.S., Zhang, D.: DCT-based Iris Recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 29, 586–595 (2007) Google Scholar
  10. 10.
    Thornton, J., Savvides, M., Vijaya Kumar, B.V.K.: A Bayesian Approach to Deformed Pattern Matching of Iris Images. IEEE Trans. on Pattern Analysis and Machine Intelligence 29, 596–606 (2007) Google Scholar
  11. 11.
    Haralick, R.M., Shanmugam, K., Dinstein, L.: Textural Features for Image Classification. IEEE Trans. on Systems, Man, and Cybernetics 3, 610–621 (1973) Google Scholar
  12. 12.
    Valkealahti, K., Oja, E.: Reduced Multidimensional Co-occurrence Histograms in Texture Classification. IEEE Trans. on Pattern Analysis and Machine Intelligence 20, 90–94 (1998) Google Scholar
  13. 13.
    Zwiggelaar, R.: Texture based Segmentation: Automatic Selection of Co-occurrence Matrices. In: 17th Int. Conf. on Pattern Recognition, vol. 1, pp. 588–591 (2004) Google Scholar
  14. 14.
    Partio, M., Cramariuc, B., Gabbouj, M., Visa, A.: Rock Texture Retrieval using Gray Level Cco-occurrence Matrix. In: 6th Nordic Signal Processing Symposium, Norway (2002) Google Scholar
  15. 15.
    Yazdi, M., et al.: Novel Ridge Orientation based Approach for Fingerprint Identification using Co-occurrence Matrix. In: Proc. of World Academy of Science, Engineering and Technology, vol. 26, pp. 371–375 (2007) Google Scholar
  16. 16.
    Dabbah, M.A., Woo, W.L., Dlay, S.S.: Secure Authentication for Face Recognition. In: Proc. of IEEE Symp. on Comput. Intell. In: Image and Signal Proc., pp. 121–126 (2007) Google Scholar
  17. 17.
    Busch, A., et al.: Texture for Script Identification. IEEE Trans. on Pattern Analysis and Machine Intelligence 27, 1720–1732 (2005) Google Scholar
  18. 18.
    Szewczyk, R., et al.: Automatic People Identification on the Basis of Iris Pattern - extraction features and classification. In: Proc. Int. Conf. on Microelectronics, pp. 691–694 (2002) Google Scholar
  19. 19.
    Gupta, G., Agarwal, M.: Iris Recognition using Non Filter-based Techniques. In: Biometric Consortium Conference (2005) Google Scholar
  20. 20.
    Bachoo, A.K., Tapamo, J.R.: Texture Analysis and Unsupervised Clustering for Segmenting Iris Images. In: ACM Int. Conf. Proc. Series, vol. 150, pp. 236–243 (2005) Google Scholar
  21. 21.
    Zaim, A., et al.: A New Method for Iris Recognition using Gray-Level Co-occurrence Matrix. In: IEEE International Conference on Electro/information Technology, pp. 350–353 (2006) Google Scholar
  22. 22.
    Proenc, H., Alexandre, L.A.: Ubiris Iris Image Database, Google Scholar
  23. 23.
    Poursaberi, A., Araabi, B.N.: A Novel Iris Recognition System using Morphological Edge Detector and Wavelet Phase Features. ICGST Int. J. on Graphics, Vision and Image Processing 5, 9–15 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Wen-Shiung Chen
    • 1
  • Ren-Hung Huang
    • 1
  • Lili Hsieh
    • 2
  1. 1.VIP-CCLab., Dept. of Electrical EngineeringNational Chi Nan UniversityTaiwan
  2. 2.Dept. of Information ManagementHsiuping Institute of TechnologyTaiwan

Personalised recommendations