Advertisement

Improving Compressed Iris Recognition Accuracy Using JPEG2000 RoI Coding

  • J. Hämmerle-Uhl
  • C. Prähauser
  • T. Starzacher
  • Andreas Uhl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)

Abstract

The impact of using JPEG2000 region of interest coding on the matching accuracy of iris recognition systems is investigated. In particular, we compare the matching scores as obtained by a concrete recognition system when using JPEG2000 compression of rectilinear iris images with and without region of interest coding enabled. The region of interest is restricted to the iris texture area plus the pupil region. It turns out that average matching scores can be improved and that the number of false negative matches is significantly decreased using region of interest coding as compared to plain JPEG2000 compression.

Keywords

Iris Image JPEG2000 Compression Noise Mask Iris Recognition User Convenience 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Daugman, J.: How iris recognition works. IEEE Transactions on Circiuts and Systems for Video Technology 14(1), 21–30 (2004)Google Scholar
  2. 2.
    Daugman, J., Downing, C.: Effect of severe image compression on iris recognition performance. IEEE Transactions on Information Forensics and Security 3(1), 52–61 (2008)Google Scholar
  3. 3.
    Ives, R.W., Broussard, R.P., Kennell, L.R., Soldan, D.L.: Effects of image compression on iris recognition system performance. Journal of Electronic Imaging 17, 011015 (2008)Google Scholar
  4. 4.
    Ives, R.W., Bonney, B.L., Etter, D.M.: Effect of image compression on iris recognition. In: IMTC 2005 – Instrumentation and Measurement Technology Conference (May 2005)Google Scholar
  5. 5.
    Jenisch, S., Lukesch, S., Uhl, A.: Comparison of compression algorithms’ impact on iris recognition accuracy II: revisiting JPEG. In: Proceedings of SPIE, Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, San Jose, CA, USA, vol. 6819, p. 68190M (January 2008)Google Scholar
  6. 6.
    Matschitsch, S., Tschinder, M., Uhl, A.: Comparison of compression algorithms’ impact on iris recognition accuracy. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 232–241. Springer, Heidelberg (2007)Google Scholar
  7. 7.
    Philips, P.J., Bowyer, K.W., Flynn, P.J.: Comments on the CASIA version 1.0 iris data set. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(10), 1869–1870 (2007)Google Scholar
  8. 8.
    Proenca, H., Alexandre, L.A.: UBIRIS: a noisy iris image database. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 970–977. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Rakshit, S., Monro, D.M.: Effects of sampling and compression on human iris verification. In: Proceedings of the IEEE International Conference on Acustics, Speech, and Signal Processing (ICASSP 2006), Tolouse, France, pp. II–337–II–340 (2006)Google Scholar
  10. 10.
    Taubman, D., Marcellin, M.W.: JPEG2000 — Image Compression Fundamentals, Standards and Practice. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  11. 11.
    von Seelen, U.: IrisCode template compression and its effects on authentication performance. In: Biometrics Consortium Conference 2003 (September 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • J. Hämmerle-Uhl
    • 1
  • C. Prähauser
    • 1
  • T. Starzacher
    • 1
  • Andreas Uhl
    • 1
  1. 1.Department of Computer SciencesSalzburg UniversityAustria

Personalised recommendations