Advertisement

Measurement of respiratory system resistance during mechanical ventilation

  • Claude Guerin
  • Jean-Christophe Richard
Chapter

Abstract

Background: The measurement of respiratory system resistance during mechanical ventilation is important to ascertain the causes of increase in airway pressure during volume-controlled ventilation, which may include airways resistance and decreased respiratory system compliance.

Discussion: Separation of total resistance from compliance of the respiratory system can be assessed by the end-inspiratory hold maneuver that separates peak pressure from plateau pressure.

Conclusions: Although this method assumes a homogeneous respiratory system, it has proven useful clinically to separate flow-dependence issues such as bronchospasm or endotracheal tube obstruction from stiff lungs (acute lung injury) or decrease chest wall (abdominal distension) compliance.

Keywords

Airway pressure Mechanical ventilation Respiratory system compliance Respiratory system resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jounieaux V, Aubert G, Dury M, Delguste P, Rodenstein D (1995) Effects of nasal positive-pressure hyperventilation on the glottis in normal awake subjects. J Appl Physiol 79:176–185PubMedGoogle Scholar
  2. 2.
    Bates JH, Baconnier P, Milic-Emili J (1988) A theoretical analysis of interrupter technique for measuring respiratory mechanics. J Appl Physiol 64:2204–2214PubMedGoogle Scholar
  3. 3.
    Mount LE (1955) The ventilation-flow resistance and compliance of rats lungs. J Physiol (Lond) 127:157–167Google Scholar
  4. 4.
    D'Angelo E, Calderini E, Torri G, Robatto FM, Bono D, Milic-Emili J (1989) Respiratory mechanics in anesthetized paralyzed humans: effects of flow, volume, and time. J Appl Physiol 67:2556–2564PubMedGoogle Scholar
  5. 5.
    Bates JH, Rossi A, Milic-Emili J (1985) Analysis of the behavior of the respiratory system with constant inspiratory flow. J Appl Physiol 58:1840–1848PubMedGoogle Scholar
  6. 6.
    Neegaard KV, Wirtz K (1927) Die Messung der Strömungswiderstände in den Atemwegen des Menschen, insbesondere bei Asthma und Emphysem. Z Klin Med 105:51–82Google Scholar
  7. 7.
    Don HF, Robson JG (1965) The mechanics of the respiratory system during anesthesia. Anesthesiology 26:168–178PubMedCrossRefGoogle Scholar
  8. 8.
    Bates JH, Brown KA, Kochi T (1989) Respiratory mechanics in the normal dog determined by expiratory flow interruption. J Appl Physiol 67:2276–2285PubMedGoogle Scholar
  9. 9.
    Eissa NT, Ranieri VM, Corbeil C, Chasse M, Robatto FM, Braidy J, Milic-Emili J (1991) Analysis of behavior of the respiratory system in ARDS patients: effects of flow, volume, and time. J Appl Physiol 70:2719–2729PubMedCrossRefGoogle Scholar
  10. 10.
    Guerin C, Coussa ML, Eissa NT, Corbeil C, Chasse M, Braidy J, Matar N, Milic-Emili J (1993) Lung and chest wall mechanics in mechanically ventilated COPD patients. J Appl Physiol 74:1570–1580PubMedGoogle Scholar
  11. 11.
    Barberis L, Manno E, Guerin C (2003) Effect of end-inspiratory pause duration on plateau pressure in mechanically ventilated patients. Intensive Care Med 29:130–134PubMedGoogle Scholar
  12. 12.
    DuBois AB, Brody AW, Lewis DH, Burgess BF (1956) Oscillation mechanics of lungs and chest in man. J Appl Physiol 8:587–594PubMedGoogle Scholar
  13. 13.
    Farre R, Ferrer M, Rotger M, Torres A, Navajas D (1998) Respiratory mechanics in ventilated COPD patients: forced oscillations versus occlusion techniques. Eur Respir J 12:170–176PubMedCrossRefGoogle Scholar
  14. 14.
    Farre R, Gavela E, Rotger M, Ferrer M, Roca J, Navajas D (2000) Noninvasive assessment of respiratory resistance in severe chronic respiratory patients with nasal CPAP. Eur Respir J 15:314–319PubMedCrossRefGoogle Scholar
  15. 15.
    Conti G, Rocco M, Antonelli M, Bufi M, Tarquini S, Lappa A, Gasparetto A (1997) Respiratory system mechanics in the early phase of acute respiratory failure due to severe kyphoscoliosis. Intensive Care Med 23:539–544PubMedCrossRefGoogle Scholar
  16. 16.
    Pelosi P, Croci M, Ravagnan I, Vicardi P, Gattinoni L (1996) Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest 109:144–151PubMedCrossRefGoogle Scholar
  17. 17.
    Rohrer F (1915) Der Strömungswiderstand in den menschlichen Atemwegen und der Einfluss der unregelmässigen Verzweigung des Bronchialsystems auf den Atmungsverlauf in verschiedenen Lungenbezirken. Pfluegers Arch Gesamte Physiol Menschen Tiere 162:225–299CrossRefGoogle Scholar
  18. 18.
    Elsasser S, Guttmann J, Stocker R, Mols G, Priebe HJ, Haberthur C (2003) Accuracy of automatic tube compensation in new-generation mechanical ventilators. Crit Care Med 31:2619–2626PubMedCrossRefGoogle Scholar
  19. 19.
    Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 158:3–11PubMedGoogle Scholar
  20. 20.
    Tantucci C, Corbeil C, Chasse M, Robatto FM, Nava S, Braidy J, Matar N, Milic-Emili J (1992) Flow and volume dependence of respiratory system flow resistance in patients with adult respiratory distress syndrome. Am Rev Respir Dis 145:355–260PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Claude Guerin
    • 1
  • Jean-Christophe Richard
    • 2
  1. 1.HÔpital de la Croix Rousse and Université de LyonService de Réanimation MédicaleFrance
  2. 2.HÔpital de la Croix Rousse and Université de LyonService de Réanimation MédicaleFrance

Personalised recommendations