Neuromonitoring in the intensive care unit. Part I. Intracranial pressure and cerebral blood flow monitoring

  • Anuj Bhatia
  • Arun Kumar Gupta


Background: Monitoring the injured brain is an integral part of the management of severely brain injured patients in intensive care. Brain-specific monitoring techniques enable focused assessment of secondary insults to the brain and may help the intensivist in making appropriate interventions guided by the various monitoring techniques, thereby reducing secondary brain damage following acute brain injury. Discussion: This review explores methods of monitoring the injured brain in an intensive care unit, including measurement of intracranial pressure and analysis of its waveform, and techniques of cerebral blood flow assessment, including transcranial Doppler ultrasonography, laser Doppler and thermal diffusion flowmetry. Conclusions: Various modalities are available to monitor the intracranial pressure and assess cerebral blood flow in the injured brain in intensive care unit. Knowledge of advantages and limitations of the different techniques can improve outcome of patients with acute brain injury.


Traumatic brain injury Intracranial pressure Ultrasonography, Doppler, transcranial Flowmetry, laser Doppler Thermal diffusion flowmetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patel HC, Menon DK, Tebbs S, Hawker R, Hutchinson PJ, Kirk-patrick PJ (2002) Specialist neurocritical care and outcome from head injury. Intensive Care Med 28:547–553PubMedCrossRefGoogle Scholar
  2. 2.
    Maas AI, Dearden M, Servadei F, Stocchetti N, Unterberg A (2000) Current recommendations for neurotrauma. Curr Opin Crit Care 6:281–292PubMedCrossRefGoogle Scholar
  3. 3.
    Sahjpaul R, Girotti M (2000) Intracranial pressure monitoring in severe traumatic brain injury—results of a Canadian survey. Can J Neurol Sci 27:143–147PubMedGoogle Scholar
  4. 4.
    Wilkins IA, Menon DK, Matta BF (2001) Management of comatose head-injured patients: are we getting any better? Anaesthesia 56:350–352PubMedCrossRefGoogle Scholar
  5. 5.
    Cremer OL, van Dijk GW, van Wensen E, Brekelmans GJ, Moons KG, Leenen LP, Kalkman CJ (2005) Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med 33:2207–2213PubMedCrossRefGoogle Scholar
  6. 6.
    The Brain Trauma Foundation. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care (2000) Recommendations for intracranial pressure monitoring technology. J Neurotrauma 17:497–506Google Scholar
  7. 7.
    Miller JD (1989) Measuring ICP in patients: its value now and in the future. In: Hoff JT, Betz AL (eds) Intracranial pressure VII. Springer, Berlin Heidelberg New York, pp 5–15Google Scholar
  8. 8.
    Bekar A, Goren S, Korfali E, Aksoy K, Boyaci S (1998) Complications of brain tissue pressure monitoring with a fibreoptic device. Neurosurg Rev 21:254–259PubMedCrossRefGoogle Scholar
  9. 9.
    Czosnyka M, Czosnyka Z, Pickard JD (1996) Laboratory testing of three intracranial pressure microtransducers: technical report. Neurosurgery 38:219–224PubMedCrossRefGoogle Scholar
  10. 10.
    Mack WJ, King RG, Ducruet AF, Kreiter K, Mocco J, Maghoub A, Mayer S, Connolly ES Jr (2003) Intracranial pressure following aneurysmal sub-arachnoid hemorrhage: monitoring practices and outcome data. Neurosurg Focus 14:1–5CrossRefGoogle Scholar
  11. 11.
    Ghajar J (1995) Intracranial pressure monitoring techniques. New Horiz 3:395–399PubMedGoogle Scholar
  12. 12.
    Stendel R, Heidenreich J, Schilling A, Akhavan-Sigari R, Kurth R, Picht T, Pietila T, Suess O, Kern C, Meisel J, Brock M (2003) Clinical evaluation of a new intracranial pressure monitoring device. Acta Neurochir (Wien) 145:185–193CrossRefGoogle Scholar
  13. 13.
    Morgalla MH, Cuno M, Mettenleiter H, Will BE, Krasznai L, Skalej M, Bitzer M, Grote EH (1997) ICP monitoring with a re-usable transducer: Experimental and clinical evaluation of the Gaeltec ICT/b pressure probe. Acta Neurochir (Wien) 139:569–573CrossRefGoogle Scholar
  14. 14.
    Gaab MR, Heissler HE, Ehrhardt K (1989) Physical characteristics of various methods for measuring ICP. In: Hoff JT, Betz AL (eds) Intracranial pressure VII. Springer, Berlin Heidelberg New York, pp 16–21Google Scholar
  15. 15.
    Raabe A, Totzauer R, Meyer O, Stockel R, Hohrein D, Schoeche J (1998) Reliability of extradural pressure measurement in clinical practice: behaviour of three modern sensors during simultaneous ipsilateral intraventricular or intraparenchymal pressure measurement. Neurosurgery 43:306–311PubMedCrossRefGoogle Scholar
  16. 16.
    Czosnyka M, Czosnyka Z, Pickard JD (1997) Laboratory testing of the Spiegelberg brain pressure monitor: a technical report. J Neurol Neurosurg Psychiatry 63:732–735PubMedCrossRefGoogle Scholar
  17. 17.
    Grände PO, Asgiersson B, Nordström CH (1997) Physiological principles for volume regulation of a tissue enclosed in a rigid shell with application to the injured brain. J Trauma 42(Suppl):S23–S31PubMedCrossRefGoogle Scholar
  18. 18.
    Eker C, Asgeirsson B, Grande PO, Schalen W, Nordstrom CH (1998) Improved outcome after severe head injury with a new therapy based on principles for brain volume regulation and preserved microcirculation. Crit Care Med 26:1881–1886PubMedGoogle Scholar
  19. 19.
    Czosnyka M, Guazzo E, Whitehouse H, Smielewski P, Czosnyka Z, Kirkpatrick P, Piechnik S, Pickard JD (1996) Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir (Wien) 138:531–541CrossRefGoogle Scholar
  20. 20.
    Balestreri M, Czosnyka M, Steiner LA, Schmidt E, Smielewski P, Matta B, Pickard JD (2004) Intracranial hypertension: what additional information can be derived from ICP waveform after head injury? Acta Neurochir (Wien) 146:131–141CrossRefGoogle Scholar
  21. 21.
    Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–19PubMedCrossRefGoogle Scholar
  22. 22.
    Lang E W, Lagopoulos J, Griffith J, Yip K, Yam A, Mudaliar Y, Mehdorn HM, Dorsch NW (2003) Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow. J Neurolog Neurosurg Psychiatry 74:1053–1059CrossRefGoogle Scholar
  23. 23.
    McKeating EG, Andrews PJ, Tocher JI, Menon DK (1998) The intensive care of severe head injury: a survey of non-neurosurgical centres in the United Kingdom. Br J Neurosurg 12:7–14PubMedCrossRefGoogle Scholar
  24. 24.
    Czosnyka M, Matta BF, Smielewski P, Kirkpatrick PJ, Pickard JD (1998) Cerebral perfusion pressure in head injured patients: a non invasive assessment using transcranial Doppler ultrasonography. J Neurosurg 88:802–808PubMedCrossRefGoogle Scholar
  25. 25.
    Schmidt B, Czosnyka M, Schwarze JJ, Sander D, Gerstner W, Lumenta CB, Pickard JD, Klingelhofer J (1999) Cerebral vasodilatation causing acute intracranial hypertension: a method for non-invasive assessment. J Cereb Blood Flow Metab 19:990–996PubMedCrossRefGoogle Scholar
  26. 26.
    Schmidt B, Czosnyka M, Schwarze JJ, Sander D, Gerstner W, Lumenta CB, Klingelhofer J (2000) Evaluation of a method for non-invasive intracranial pressure assessment during infusion studies in patients with hydrocephalus. J Neurosurg 92:793–800PubMedCrossRefGoogle Scholar
  27. 27.
    Dahl A, Russell D, Nyberg-Hansen R, Rootwelt K (1992) A comparison of regional cerebral blood flow and middle cerebral artery blood flow velocities: simultaneous measurements in healthy subjects. J Cereb Blood Flow Metab 12:1049–1054PubMedGoogle Scholar
  28. 28.
    Smielewski P, Czosnyka M, Iyer V, Piechneik S, Whitehouse H, Pickard JD (1995) Computerised transient hyperaemic response test—a method for assessing autoregulation. Ultrasound Med Biol 21:599–611PubMedCrossRefGoogle Scholar
  29. 29.
    Lam JM, Smielweski P, Czosnyka M, Pickard JD, Kirkpatrick PJ (2000) Predicting delayed ischaemic deficits after aneurysmal subarachnoid haemorrhage using a transient hyperaemic response test of cerebral autoregulation. Neurosurgery 47:819–825PubMedCrossRefGoogle Scholar
  30. 30.
    Lang EW, Diehl RR, Mehdorn HM (2001) Cerebral autoregulation testing after aneurysmal subarachnoid haemorrhage: the phase relationship between arterial blood pressure and cerebral blood flow velocity. Crit Care Med 29:158–163PubMedCrossRefGoogle Scholar
  31. 31.
    Jarus-Dziedzic K, Bogucki J, Zub W (2001) The influence of ruptured cerebral aneurysm localization on the blood flow velocity evaluated by transcranial Doppler ultrasonography. Neurol Res 23:23–28PubMedCrossRefGoogle Scholar
  32. 32.
    Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P (1988) Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir (Wein) 42:81–84Google Scholar
  33. 33.
    Minhas PS, Menon DK, Smielewski P, Czosnyka M, Kirkpatrick PJ, Clark JC, Pickard JD (2003) Positron emission tomographic cerebral perfusion disturbances and transcranial Doppler findings among patients with neurological deterioration after subarachnoid haemorrhage. Neurosurgery 52:1017–1024PubMedCrossRefGoogle Scholar
  34. 34.
    Horn P, Vajkoczy P, Bauhuf C, Munch E, Poeckler-Schoeniger C, Schmiedek P (2001) Quantitative regional cerebral blood flow techniques improve non-invasive detection of cerebrovascular vasospasm after aneurysmal subarachnoid haemorrhage. Cerebrovasc Dis 12:197–202PubMedCrossRefGoogle Scholar
  35. 35.
    Ratsep T, Asser T (2001) Cerebral haemodynamic impairment after aneurysmal subarachnoid hemorrhage as evaluated using transcranial Doppler ultrasonography: relationship to delayed cerebral ischemia and clinical outcome. J Neurosurg 95:393–401PubMedCrossRefGoogle Scholar
  36. 36.
    Schmidt EA, Czosnyka M, Gooskens I, Piechnik SK, Matta BF, Whitfield PC, Pickard JD (2001) Preliminary experience of the estimation of the estimation of cerebral perfusion pressure using transcranial Doppler ultrasonography. J Neurolog Neurosurg Psychiatry 70:198–204CrossRefGoogle Scholar
  37. 37.
    Buhre W, Heinzel FR, Grund S, Sonntag H, Weyland A (2003) Extrapolation to zero-flow pressure in cerebral arteries to estimate intracranial pressure. Br J Anaesth 90:291–295PubMedCrossRefGoogle Scholar
  38. 38.
    Thees C, Scholz M, Schaller C, Gass A, Pavlidis C, Weyland A (2002) Relationship between intracranial pressure and critical closing pressure in patients with neurotrauma. Anesthesiology 96:595–599PubMedCrossRefGoogle Scholar
  39. 39.
    Hadani M, Bruk B, Ram Z, Knoller N, Spiegelmann R, Segal E (1999) Application of transcranial Doppler ultrasonography for the diagnosis of brain death. Intensive Care Med 25:822–828PubMedCrossRefGoogle Scholar
  40. 40.
    Lampl Y, Gilad R, Eschel Y, Boaz M, Rapoport A, Sadeh M (2002) Diagnosing brain death using the transcranial Doppler with a transorbital approach. Arch Neurol 59:58–60PubMedCrossRefGoogle Scholar
  41. 41.
    Klotzsch C, Popescu O, Berlit P (1998) A new 1 MHz probe for transcranial Doppler sonography in patients with inadequate temporal bone windows. Ultrasound Med Biol 24:101–103PubMedCrossRefGoogle Scholar
  42. 42.
    Bolognese P, Miller JI, Heger IM, Milhorat TH (1993) Laser Doppler flowmetry in neurosurgery. J Neurosurg Anesthesiol 5:151–158PubMedGoogle Scholar
  43. 43.
    Lam JM, Hsiang JN, Poon WS (1997) Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. J Neurosurg 86:438–445PubMedCrossRefGoogle Scholar
  44. 44.
    Kirkpatrick PJ, Smielweski P, Piechnik S, Pickard JD, Czosnyka M (1996) Early effects of mannitol in patients with head injuries assessed using bedside multimodality monitoring. Neurosurgery 39:714–720PubMedCrossRefGoogle Scholar
  45. 45.
    Kirkpatrick PJ, Smielweski P, Czosnyka M, Pickard JD (1994) Continuous monitoring of cortical perfusion by laser Doppler flowmetry in ventilated patients with head injury. J Neurolog Neurosurg Psychiatry 57:1382–1388CrossRefGoogle Scholar
  46. 46.
    Le Bihan D, Turner R (1992) The capillary network: a link between IVIM and classical perfusion. Magn Reson Med 27:171–178PubMedCrossRefGoogle Scholar
  47. 47.
    Carter LP (1991) Surface monitoring of cerebral cortical blood flow. Cerebrovasc Brain Metab Rev 3:246–261PubMedGoogle Scholar
  48. 48.
    Vajkoczy P, Roth H, Horn P, Lucke T, Thome C, Hubner U, Martin GT, Zappletal C, Klar E, Schilling L, Schmiedek P (2000) Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a normal thermal diffusion microprobe. J Neurosurg 93:265–274PubMedCrossRefGoogle Scholar
  49. 49.
    Carter LP, Weinand ME, Oommen KJ (1993) Cerebral blod flow (CBF) monitoring in intensive care by thermal diffusion. Acta Neurochir Suppl (Wien) 59:43–46Google Scholar
  50. 50.
    Choksey MS, Chambers IR, Jenkins A, Mendelow AD, Sengupta RP (1993) Cortical thermal clearance monitoring in surgery for giant middle cerebral artery aneurysm. Br J Neurosurg 7:673–676PubMedCrossRefGoogle Scholar
  51. 51.
    Vajkoczy P, Horn P, Thome C, Munch E, Schmiedek P (2003) Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg 98:1227–1234PubMedCrossRefGoogle Scholar
  52. 52.
    Vajkoczy P, Horn P, Bauhuf C, Munch E, Hubner U, Thome C (2001) Effect of intra-arterial papaverine on regional cerebral blood flow in hemodynamically relevant cerebral vasospasm. Stroke 32:498–505PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Anuj Bhatia
    • 1
  • Arun Kumar Gupta
    • 2
  1. 1.Department of AnaesthesiaAddenbrooke’s HospitalCambridgeUK
  2. 2.Neuroscience Critical Care Unit, Addenbrooke’s HospitalCambridgeUK

Personalised recommendations