Skip to main content

The classical theory of perturbations and the problem of stability of planetary systems

  • Chapter
Collected Works

Part of the book series: Vladimir I. Arnold - Collected Works ((ARNOLD,volume 1))

  • 3550 Accesses

Abstract

1. The theory of perturbations enables us to predict planetary motion for many years ahead with all necessary accuracy. However, qualitative questions on the behavior of a system during an infinite time interval, for example the problem of stability, could not be solved by the theory of perturbations. Planetary motion is described in this theory by series of the form

$$ \sum_{m,n} a_{mn} \cos[(m \omega_{1} + n \omega_{2})t + \phi_{mn}] $$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. K. Jacoby, Lectures on dynamics, Moscow, 1936, p. 29. (Russian)

    Google Scholar 

  2. H. Poincare, On curves defined by differential equations, Moscow, 1947.

    Google Scholar 

  3. ---, Les methodes nouvelles de La mecanique celeste, Vol. 1, 2, 3, Paris, 1892, 1893, 1899.

    Google Scholar 

  4. C. L. Charlier, Die Mechanik des Himmels, Vol. 1,2, Leipzig, 1902,1907.

    Google Scholar 

  5. M. Born, Lectures on atomic mechanics, Kharkov, 1934.

    Google Scholar 

  6. A. Ja. Hincin, Continued fractions, Moscow, 1935. (Russian)

    Google Scholar 

  7. G. D. Birkoff, Dynamical systems, Amer. Math. Soc., Providence, R. I., 1927.

    Google Scholar 

  8. C. L. Siegel, Vorlesungen aber flimmelsmechanik, Springer, Berlin, 1956.

    Google Scholar 

  9. ---, Sb. Matematika 5 (1961), 129.

    Google Scholar 

  10. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 98 (1954), 527.

    MATH  MathSciNet  Google Scholar 

  11. International Congress of Mathematicians, Amsterdam 1954, North-Holland, Amsterdam, 1956.

    Google Scholar 

  12. V. I. Arnol'd, Dokl. Akad. Nauk SSSR 137 (1961),255 = Soviet Math. Dokl. 2 (1961),247.

    MathSciNet  Google Scholar 

  13. ibid. 138 (1961), 13 = Soviet Math. Dokl. 2 (1961), 50l.

    Google Scholar 

  14. ibid. 142 (1962), 758 = Soviet Math. Dokl. 3 (1962), 136.

    Google Scholar 

  15. V.-J. Le Verrier, Ann. de 1'Observatoire Imperial de Paris, 1855.

    Google Scholar 

  16. N. N. Bogal ';ubov and Ju. A. Mitropol'skir, A symptotic methods in the theory of nonlinear oscillations, GITTL, Moscow, 1958. (Russian)

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). The classical theory of perturbations and the problem of stability of planetary systems. In: Givental, A., et al. Collected Works. Vladimir I. Arnold - Collected Works, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01742-1_18

Download citation

Publish with us

Policies and ethics