Skip to main content

Part of the book series: IFMBE Proceedings ((IFMBE,volume 24))

Abstract

Accurate in-vivo evaluation of the structural and morphological changes of the ocular structures of small animal models is essential in understanding the disease mechanisms, monitoring the disease progression, and response to therapies. Currently, ocular morphology and structure of animal models can only be examined quantitatively with histology. We present the advances for in vivo non contact three-dimensional (3D) ocular imaging of small animals with ultra high-resolution Spectral Domain Optical Coherence Tomography (SD-OCT) and quantitative information extraction using 3D segmentation of the OCT images. A SD-OCT system with two dedicated optical delivery systems for imaging the retina and anterior segment of small animals in vivo was built. An advanced 5-axis animal positioning and alignment system was developed for high throughput applications. 3D segmentation algorithm was developed for calculation of the retinal thickness map. An algorithm for automatic segmentation of the tumor boundaries and tumor volume calculation for LHβTag mouse model of retinoblastoma was also developed. The OCT system was applied in imaging mice, rats, rabbits, and raptors in the study of various ocular diseases and treatment procedures. One of the exciting applications is that the retina of Broad-winged hawk, Barred owl and Great-horned owl were imaged in vivo for the first time with high quality. The SD-OCT system accomplished the goal of non-invasive, non-contact, in vivo imaging of small animal retinal structures with high imaging quality and short imaging time (~2 minutes, acquisition time 2.7 seconds). These results make the system suitable for routine high throughput applications. Together with the segmentation algorithms, the acquired 3D data allows quantitative information extraction and provides means for precise comparison of the images acquired at different time, which make possible longitudinal studies of retinal diseases and treatment effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruggeri, M. et al. (2009). Ultra High-Resolution Optical Coherence Tomography for Ocular Imaging of Small Animals. In: McGoron, A.J., Li, CZ., Lin, WC. (eds) 25th Southern Biomedical Engineering Conference 2009, 15 – 17 May 2009, Miami, Florida, USA. IFMBE Proceedings, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01697-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01697-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01696-7

  • Online ISBN: 978-3-642-01697-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics