Advertisement

Capacity Planning in Economic Grid Markets

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5529)

Abstract

Due to the few computing resource planning options currently available in Grid computing, capacity planning, an old discipline for analyzing resource purchases, is simple to perform. However, once a commercial computing Grid is established, which provides many different resource types at variable prices, capacity planning will become more complex and the user will require support for handling this difficult process. The support could come from an online Grid Capacity Planning Service, which helps users with little IT expertise to make use of the Grid in a cost-effective manner. This Grid Capacity Planning Service is a stand-alone service, enabling companies to outsource their capacity planning task. This paper describes the Grid Capacity Planning Service and demonstrates the workings of the service through simulations.

Keywords

Grid Economics Grid Capacity Planning Service-Oriented Computing Grid Computing Resource Allocation Utility Computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IBM: A Statistical Approach to Capacity Planning for On-Demand Computing Services, http://domino.watson.ibm.com/comm/research.nsf/pages/r.statistics.innovation2.html
  2. 2.
    Li, C., Li, L.: Competitive proportional resource allocation policy for computational grid. Future Generation Computer Systems 20(6), 1041–1054 (2004)CrossRefGoogle Scholar
  3. 3.
    Yu, J., Li, M., Ying, L., Hong, F., Gao, M.: A Framework for Price-Based Re-source Allocation on the Grid. In: Liew, K.M., Shen, H., See, S., Cai, W., Fan, P., Horiguchi, S. (eds.) PDCAT 2004. LNCS, vol. 3320, pp. 341–344. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Li, C., Li, L.: Dynamic resource allocation for joint grid user and provider opti-misation in computational grid. International Journal of Computer Applications in Technology 26(4), 242–250 (2006)CrossRefGoogle Scholar
  5. 5.
    Wolski, R., Brevik, J., Plank, J.S., Bryan, T.: Grid Resource Allocation and Control Using Computational Economies. In: Berman, F., Fox, G., Hey, T. (eds.), pp. 747–771. John Wiley & Sons, Hoboken (2003)Google Scholar
  6. 6.
    Pourebrahimi, B., Bertels, K., Kandru, G.M., Vassiliadis, S.: Market-Based Resource Allocation in Grids. In: Second IEEE International Conference on e-Science and Grid Computing, pp. 80–88. IEEE Press, New York (2006)Google Scholar
  7. 7.
    Afzal, A., McGough, A.S., Darlington, J.: Capacity planning and scheduling in Grid computing environments. Future Generation Computer Systems 24(5), 404–414 (2008)CrossRefGoogle Scholar
  8. 8.
    Siddiqui, M., Villazon, A., Fahringer, T.: Grid Capacity Planning with Negotiation-based Advance Reservation for Optimized QoS. In: SC 2006, pp. 21–37. IEEE Press, New York (2006)Google Scholar
  9. 9.
    Borowsky, E., Golding, R., Jacobson, P., Merchant, A., Schreier, L., Spasojevic, M., Wilkes, J.: Capacity planning with phased workloads. In: Proceedings of the 1st international Workshop on Software and Performance, pp. 199–207. ACM, New York (1998)Google Scholar
  10. 10.
    Risch, M., Altmann, J.: Cost Analysis of Current Grids and its Implications for Future Grid Markets. In: Altmann, J., Neumann, D., Fahringer, T. (eds.) GECON 2008. LNCS, vol. 5206, pp. 13–27. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Risch, M., Altmann, J., Makrypoulias, Y., Soursos, S.: Economics-Aware Capacity Planning for Commercial Grids. In: Collaborations and the Knowledge Economy, vol. 5, pp. 1197–1205. IOS Press, Amsterdam (2008)Google Scholar
  12. 12.
    Amazon Elastic Compute Cloud (Amazon EC2), http://www.amazon.com/gp/browse.html?node=201590011
  13. 13.
    Tsunamic Technologies Inc., http://www.clusterondemand.com/
  14. 14.
    Regev, O., Nisan, N.: The POPCORN market—an online market for computational resources. In: Proceedings of the First international Conference on information and Computation, pp. 148–157. ACM, New York (1998)Google Scholar
  15. 15.
    Waldspurger, C.A., Hogg, T., Huberman, B.A., Kephart, J.O., Stornetta, W.S.: Spawn: A Distributed Computational Economy. IEEE Transactions on Software Engineering 18(2), 103–117 (1992)CrossRefGoogle Scholar
  16. 16.
    Buyya, R., Abramson, D., Giddy, J.: An economy grid architecture for service-oriented grid computing. In: 10th IEEE International Heterogeneous Computing Workshop. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  17. 17.
    Lai, K., Rasmusson, L., Adar, E., Zhang, L., Huberman, B.A.: Tycoon: An implementation of a distributed, market-based resource allocation system. Multiagent and Grid Systems 1(3), 169–182 (2005)CrossRefzbMATHGoogle Scholar
  18. 18.
    Repast Simulation Environment, http://repast.sourceforge.net/
  19. 19.
    Apache Commons Math Libraries, http://commons.apache.org/math/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.School of Information TechnologyInternational University in GermanyBruchsalGermany
  2. 2.TEMEP, School of Industrial and Management Engineering College of EngineeringSeoul National UniversitySeoulSouth Korea

Personalised recommendations