Abstract
We will discuss Mixed-Integer Evolution Strategies (MIES) and their application to the optimization of control parameters of a semi-automatic image analysis system for Intravascular Ultrasound (IVUS) images. IVUS is a technique used to obtain real-time high-resolution tomographic images from the inside of coronary vessels and other arteries. The IVUS image feature detectors used in the analysis system are expert-designed and the default parameters are calibrated manually so far. The new approach, based on MIES, can automatically find good parameterizations for sets of images, which provide in better results than manually tuned parameters. From the algorithmic point of view, the difficulty is designing a blackbox optimization strategy that can deal with nonlinear functions and different types of parameters, including integer, nominal discrete and continuous variables. MIES turns out to be well suited for this task. The results presented in this contribution will summarize and extend recent studies on benchmark functions and the IVUS image analysis optimization problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bovenkamp, E., Dijkstra, J., Bosch, J., Reiber, J.: Multi-agent segmentation of ivus images. Pattern Recognition 37(4), 647–663 (2004)
Papadogiorgaki, M., Mezaris, V., Chatzizisis, Y.S., Giannoglou, G.D., Kompatsiaris, I.: Automated ivus contour detection using intesity features and radial basis function approximation. In: CBMS 2007: Proceedings of the Twentieth IEEE International Symposium on Computer-Based Medical Systems, pp. 183–188. IEEE Computer Society, Washington (2007)
Sanz-Requenaa, R., Moratala, D., García-Sáncheza, D.R., Bodíb, V., Rietaa, J., Sanchis, J.: Automatic segmentation and 3d reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies. Computerized Medical Imaging and Graphics 31(2), 71–80 (2007)
Bovenkamp, E., Dijkstra, J., Bosch, J., Reiber, J.: User-agent cooperation in multi-agent ivus image segmentation. IEEE Transactions on Medical Imaging (accepted) (2008)
Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge (1990)
Ballerini, L., Franzén, L.: Genetic optimization of morphologicial filters with applications in breast cancer detection. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 250–259. Springer, Heidelberg (2004)
Emmerich, M., Grötzner, M., Groß, B., Schütz, M.: Mixed-integer evolution strategy for chemical plant optimization with simulators. In: Parmee, I. (ed.) Evolutionary Design and Manufacture - Selected papers from ACDM, pp. 55–67. Springer, London (2000)
Rosamond, W., Flegal, K., Friday, G., Furie, K., Go, A., Greenlund, K., Haase, N., Ho, M., Howard, V., Kissela, B., Kittner, S., Lloyd-Jones, D., McDermott, M., Meigs, J., Moy, C., Nichol, G., O’Donnell, C.J., Roger, V., Rumsfeld, J., Sorlie, P., Steinberger, J., Thom, T., Wasserthiel-Smoller, S., Hong, Y.: Heart disease and stroke statistics–2007 update: a report from the american heart association statistics committee and stroke statistics subcommittee. Circulation 115(5) (2007)
Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York (1996)
Rechenberg, I.: Evolutionsstrategie 1994. Frommann-Holzboog, Stuttgart (1994)
Schwefel, H.P.: Evolution and Optimum Seeking. Sixth-Generation Computer Technology Series. Wiley, New York (1995)
Rudolph, G.: An evolutionary algorithm for integer programming. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 139–148. Springer, Heidelberg (1994)
Schütz, M., Sprave, J.: Application of parallel mixed-integer evolution strategies with mutation rate pooling. Evolutionary Programming, 345–354 (1996)
Groß, B.: Gesamtoptimierung verfahrenstechnischer Systeme mit Evolutionären Algorithmen. Dissertation, Rheinisch – Westfälische Technische Hochschule Aachen, Lehrstuhl für Technische Thermodynamik (1999)
Li, R., Emmerich, M., Bovenkamp, E., Eggermont, J., Bäck, T., Dijkstra, J., Reiber, J.: Mixed-Integer Evolution Strategies and Their Application to Intravascular Ultrasound Image Analysis. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 415–426. Springer, Heidelberg (2006)
Li, R., Emmerich, M., Eggermont, J., Bovenkamp, E., Bäck, T., Dijkstra, J., Reiber, J.: Mixed-Integer Optimization of Coronary Vessel Image Analysis using Evolution Strategies. In: Keijzer, et al. (eds.) GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation, Seattle, WA, USA, pp. 1645–1652 (2006)
Hoffmeister, F., Sprave, J.: Problem-independent handling of constraints by use of metric penalty functions. In: Fogel, L., et al. (eds.) Evolutionary Programming 1996, San Diego, CA, USA, NY, USA, pp. 289–294. IEEE Press, Los Alamitos (1996)
Beyer, H.G.: Theory of Evolution Strategies. Springer, Heidelberg (2001)
Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Schriftenreihe Forschungsergebnisse zur Informatik. Kovac (1997)
Eggermont, J., Li, R., Bovenkamp, E.P., Marquering, H., Emmerich, M.M., van der Lugt, A., Bäck, T., Dijkstra, J., Reiber, J.C.: Optimizing computed tomographic angiography image segmentation using fitness based partitioning. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 275–284. Springer, Heidelberg (2008)
Li, R., Eggermont, J., Emmerich, M.M., Bovenkamp, E., Bäck, T., Dijkstra, J., Reiber, J.C.: Towards dynamic fitness based partitioning for intravascular ultrasound image analysis. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 391–398. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Li, R. et al. (2009). Optimizing a Medical Image Analysis System Using Mixed-Integer Evolution Strategies. In: Cagnoni, S. (eds) Evolutionary Image Analysis and Signal Processing. Studies in Computational Intelligence, vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01636-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-01636-3_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01635-6
Online ISBN: 978-3-642-01636-3
eBook Packages: EngineeringEngineering (R0)