Advertisement

Hierarchical Organization of Functional Modules in Weighted Protein Interaction Networks Using Clustering Coefficient

  • Min Li
  • Jianxin Wang
  • Jianer Chen
  • Yi Pan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5542)

Abstract

As advances in the technologies of predicting protein interactions, huge data sets portrayed as networks have been available. Several graph clustering approaches have been proposed to detect functional modules from such networks. However, all methods of predicting protein interactions are known to yield a nonnegligible amount of false positives. Most of the graph clustering algorithms are challenging to be used in the network with high false positives. We extend the protein interaction network from unweighted graph to weighted graph and propose an algorithm for hierarchically clustering in the weighted graph. The proposed algorithm HC-Wpin is applied to the protein interaction network of S.cerevisiae and the identified modules are validated by GO annotations. Many significant functional modules are detected, most of which are corresponding to the known complexes. Moreover, our algorithm HC-Wpin is faster and more accurate compared to other previous algorithms. The program is available at http://bioinfo.csu.edu.cn/limin/HC-Wpin.

Keywords

Protein interaction network clustering functional module 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Uetz, P., et al.: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000)CrossRefPubMedGoogle Scholar
  2. 2.
    Gavin, A.C., et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)CrossRefPubMedGoogle Scholar
  3. 3.
    Gavin, A.C., et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084), 631–636 (2006)CrossRefPubMedGoogle Scholar
  4. 4.
    Ho, Y., et al.: Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature 415(6868), 180–183 (2002)CrossRefPubMedGoogle Scholar
  5. 5.
    Krogan, N.J., et al.: High-definition macromolecular. composition of yeast RNA-processing complexes. Molecular Cell 13, 225–239 (2004)CrossRefPubMedGoogle Scholar
  6. 6.
    Krogan, N.J., et al.: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084), 637–643 (2006)CrossRefPubMedGoogle Scholar
  7. 7.
    Harwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, c47–c52 (1999)CrossRefGoogle Scholar
  8. 8.
    Cho, Y.R., Hwang, W., Ramanmathan, M., Zhang, A.D.: Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics 8, 265 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rives, A.W., Galitski, T.: Modular organization of cellular networks. Proc. Natl. Acad. Sci 100, 1128–1133 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ravasz, E., et al.: Hierarchical organization of modularity in metaboli networks. Science 297, 1551–1555 (2002)CrossRefPubMedGoogle Scholar
  12. 12.
    Luo, F., Yang, Y.F., Chen, C.F., Chang, R., Zhou, J.Z.: Modular organization of protein interaction networks. Bioinformatics 23(2), 207–214 (2007)CrossRefPubMedGoogle Scholar
  13. 13.
    Brohee, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics, 7–488 (2006)Google Scholar
  14. 14.
    Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci., 12123–12128 (2003)Google Scholar
  15. 15.
    Bu, D., et al.: Topological structure analysis of the protein-protein interaction networks in budding yeast. Nucleic Acid Research 31(9), 2443–2450 (2003)CrossRefGoogle Scholar
  16. 16.
    Brun, C., et al.: Clustering proteins from interaction networks for the prediction of cellular functions. BMC Bioinformatics 7, 488 (2004)Google Scholar
  17. 17.
    Bader, G.D., Hogue, C.W.: An Automated Method for Finding Molecular Complexes in Large Protein Interaction Networks. BMC Bioinformatics 4, 2 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., Kanaya, S.: Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics, 7–207 (2006)Google Scholar
  19. 19.
    Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)CrossRefPubMedGoogle Scholar
  20. 20.
    Barabási, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nature Reviews: Genetics 5, 101–114 (2004)CrossRefPubMedGoogle Scholar
  21. 21.
    Friedel, C., Zimmer, R.: Inferring topology from clustering coefficients in protein-protein interaction networks. BMC Bioinformatics, 7–519 (2006)Google Scholar
  22. 22.
    Radicchi, F., et al.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. 101, 2658–2663 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Li, M., Wang, J.X., Chen, J.E.: A fast agglomerate algorithm for mining functional modules in protein interaction networks. In: Peng, Y., Zhang, Y. (eds.) Proceedings of the First International Conference on BioMedical Engineering and Informatics: Hainan, China, May 27-30, pp. 3–7 (2008)Google Scholar
  24. 24.
    Xenarios, I., et al.: DIP: the Database of Interaction Proteins: a research tool for studying cellular networks of protien interactions. Nucleic Acids Res. 30, 303–305 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sharan, R., et al.: Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. 102(6), 1974–1979 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: Qpath: a method for querying pathways in a protein-protein interaction network. BMC Bioinformatics, 7–199 (2006)Google Scholar
  27. 27.
    Hwang, W., Cho, Y.R., Zhang, A., Ramanathan, M.: A novel functional module detection algorithm for protein-protein interaction networks. Algorithms for Molecular Biology 12, 1–24 (2006)Google Scholar
  28. 28.
    von Mering, C., et al.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417(6887), 399–403 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Min Li
    • 1
  • Jianxin Wang
    • 1
  • Jianer Chen
    • 1
    • 2
  • Yi Pan
    • 1
    • 3
  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaP. R. China
  2. 2.Department of Computer ScienceTexas A&M UniversityUSA
  3. 3.Department of Computer ScienceGeorgia State UniversityAtlantaUSA

Personalised recommendations