Querying Protein-Protein Interaction Networks

  • Guillaume Blin
  • Florian Sikora
  • Stéphane Vialette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5542)


Recent techniques increase the amount of our knowledge of interactions between proteins. To filter, interpret and organize this data, many authors have provided tools for querying patterns in the shape of paths or trees in Protein-Protein Interaction networks. In this paper, we propose an exact algorithm for querying graphs pattern based on dynamic programming and color-coding. We provide an implementation which has been validated on real data.


Dynamic Programming Exact Algorithm Tree Decomposition Graph Query Tree Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Color coding. Journal of the ACM 42(4), 844–856 (1995)CrossRefGoogle Scholar
  2. 2.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of Molecular Biology 215(3), 403–410 (1990)CrossRefPubMedGoogle Scholar
  3. 3.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. Journal on Algebraic and Discrete Methods 8(2), 277–284 (1987)CrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23 (1993)Google Scholar
  5. 5.
    Bodlaender, H.L.: A cubic kernel for feedback vertex set. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 320–331. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Dent, P., Yacoub, A., Fisher, P.B., Hagan, M.P., Grant, S.: MAPK pathways in radiation responses. Oncogene 22, 5885–5896 (2003)CrossRefPubMedGoogle Scholar
  7. 7.
    Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., Sharan, R.: QNet: A Tool for Querying Protein Interaction Networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: a guide to the theory of NP-completeness. W.H. Freeman, San Franciso (1979)Google Scholar
  10. 10.
    Gavin, A.C., Boshe, M., et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 414(6868), 141–147 (2002)CrossRefGoogle Scholar
  11. 11.
    Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. Journal of Computer and System Sciences 72(8), 1386–1396 (2006)CrossRefGoogle Scholar
  12. 12.
    Ho, Y., Gruhler, A., et al.: Systematic identification of protein complexes in Saccharomyces cerevisae by mass spectrometry. Nature 415(6868), 180–183 (2002)CrossRefPubMedGoogle Scholar
  13. 13.
    Huffner, F., Wernicke, S., Zichner, T.: Algorithm Engineering For Color-Coding To Facilitate Signaling Pathway Detection. In: Proceedings of the 5th Asia-Pacific Bioinformatics Conference. Imperial College Press (2007)Google Scholar
  14. 14.
    Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., Hattori, M.: The KEGG resource for deciphering the genome. Nucleic acids research 32, 277–280 (2004)CrossRefGoogle Scholar
  15. 15.
    Karp, R.M.: Reducibility among combinatorial problems. In: Thatcher, J.W., Miller, R.E. (eds.) Complexity of computer computations, pp. 85–103. Plenum Press, New York (1972)CrossRefGoogle Scholar
  16. 16.
    Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R., Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proceedings of the National Academy of Sciences 100(20), 11394–11399 (2003)CrossRefGoogle Scholar
  17. 17.
    Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., Yeates, T.O.: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. PNAS 96(8), 4285–4288 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of metabolic pathways. Bioinformatics 21(16), 3401–3408 (2005)CrossRefPubMedGoogle Scholar
  19. 19.
    Reguly, T., Breitkreutz, A., Boucher, L., Breitkreutz, B.J., Hon, G.C., Myers, C.L., Parsons, A., Friesen, H., Oughtred, R., Tong, A., et al.: Comprehensive curation and analysis of global interaction networks in saccharomyces cerevisiae. Journal of Biology (2006)Google Scholar
  20. 20.
    Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. Journal of Computational Biology 13, 133–144 (2006)CrossRefPubMedGoogle Scholar
  21. 21.
    Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: QPath: a method for querying pathways in a protein-protein interaction network. BMC Bioinformatics 7, 199 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Thomasse, S.: A quadratic kernel for feedback vertex set. In: Proceedings SODA (2009) (to appear) (unpublished manuscript)Google Scholar
  23. 23.
    Uetz, P., Giot, L., et al.: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisae. Nature 403(6770), 623–627 (2000)CrossRefPubMedGoogle Scholar
  24. 24.
    Xenarios, I., Salwinski, L., Duan, X.J., Higney, P., Kim, S.M., Eisenberg, D.: DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Research 30(1), 303 (2002)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Guillaume Blin
    • 1
  • Florian Sikora
    • 1
  • Stéphane Vialette
    • 1
  1. 1.Université Paris-Est, LIGM - UMR CNRS 8049France

Personalised recommendations