Using Gene Expression Modeling to Determine Biological Relevance of Putative Regulatory Networks

  • Peter Larsen
  • Yang Dai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5542)


Identifying gene regulatory networks from high-throughput gene expression data is one of the most important goals of bioinformatics, but it remains difficult to define what makes a ‘good’ network. Here we introduce Expression Modeling Networks (EMN), in which we propose that a ‘good’ regulatory network must be a functioning tool that predicts biological behavior. Interaction strengths between a regulator and target gene are calculated by fitting observed expression data to the EMN. ‘Better’ EMNs should have superior ability to model previously observed expression data. In this study, we generate regulatory networks by three methods using Bayesian network approach from an oxidative stress gene expression time course experiments. We show that better networks, identified by percentage of interactions between genes sharing at least one GO-Slim Biological Process terms, do indeed generate more predictive EMN’s.


Gene expression linear model least-squares expression modeling network regulatory network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weaver, D., Workman, C., Stormo, G.: Modeling regulatory networks with weight matrices. In: Pacific Symp. Biocomp., vol. 99(4), pp. 112–123 (1999)Google Scholar
  2. 2.
    Butte, A.J., Tamayo, P., Slonim, D., Golub, T.R., Kohane, I.S.: Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Sciences of the United States of America 97(22), 12182–12186 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Elo, L.L., Jarvenpaa, H., Oresic, M., Lahesmaa, R., Aittokallio, T.: Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process. Bioinformatics 23(16), 2096–2103 (2007)CrossRefPubMedGoogle Scholar
  4. 4.
    Huttenhower, C., Flamholz, A., Landis, J., Sahi, S., Myers, C., Olszewski, K., Hibbs, M., Siemers, N., Troyanskaya, O., Coller, H.: Nearest Neighbor Networks: clustering expression data based on gene neighborhoods. BMC Bioinformatics 8(1), 250 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Margolin, A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R., Califano, A.: ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC Bioinformatics 7(suppl. 1), S7 (2006)CrossRefGoogle Scholar
  6. 6.
    Basso, K., Margolin, A.A., Stolovitzky, G., Klein, U., Dalla-Favera, R., Califano, A.: Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37(4), 382 (2005)CrossRefPubMedGoogle Scholar
  7. 7.
    Chen, G., Larsen, P., Almasri, E., Dai, Y.: Rank-based edge reconstruction for scale-free genetic regulatory networks. BMC Bioinformatics 9(1), 75 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601 (2000)CrossRefPubMedGoogle Scholar
  9. 9.
    Almasri, E., Larsen, P., Chen, G., Dai, Y.: Incorporating literature knowledge in Bayesian network for inferring gene networks with gene expression data. In: Măndoiu, I., Sunderraman, R., Zelikovsky, A. (eds.) ISBRA 2008. LNCS (LNBI), vol. 4983, pp. 184–195. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Hartemink, A.J., Gifford, D.K., Jaakkola, T.S., Young, R.A.: Combining location and expression data for principled discovery of genetic regulatory network models. In: Pac. Symp. Biocomput., pp. 437–449 (2002)Google Scholar
  11. 11.
    Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., Miyano, S.: Combining Microarrays and Biological Knowledge for Estimating Gene Networks via Bayesian Networks. In: Proceedings of the IEEE Computer Society Conference on Bioinformatics. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  12. 12.
    Le Phillip, P., Bahl, A., Unga, L.H.: Using prior knowledge to improve genetic network reconstruction from microarray data. Silico Biology 4, 335–353 (2004)Google Scholar
  13. 13.
    Kulkarnia, K., Larsen, P., Linninger, A.A.: Assessing chronic liver toxicity based on relative gene expression data. Journal of Theoretical Biology 254(2), 308–318 (2008)CrossRefGoogle Scholar
  14. 14.
    R Development Core Team: R: A Language and Environment for Statistical Computing,
  15. 15.
    Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., Brown, P.O.: Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11, 4241–4257 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Larsen, P., Almasri, E., Chen, G., Dai, Y.: A statistical method to incorporate biological knowledge for generating testable novel gene regulatory interactions from microarray experiments. BMC Bioinformatics 8, 317 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
    Herskovits, E., Cooper, G.: Algorithms for Bayesian belief-network precomputation. Methods Inf. Med. 30(2), 81–89 (1991)PubMedGoogle Scholar
  20. 20.
    Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Peter Larsen
    • 1
  • Yang Dai
    • 2
  1. 1.Core Genomics Laboratory (MC063)University of Illinois at ChicagoChicagoUSA
  2. 2.Department of Bioengineering (MC063)University of Illinois at ChicagoChicagoUSA

Personalised recommendations