Advertisement

Prediction and Classification of Real and Pseudo MicroRNA Precursors via Data Fuzzification and Fuzzy Decision Trees

  • Na’el Abu-halaweh
  • Robert Harrison
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5542)

Abstract

MicroRNAs (miRNAs) are short non-coding RNA molecules that play a significant role in post-transcriptional gene regulation. Although, hundreds of miRNAs have been identified, recent studies indicate that more remain to be discovered. Identifying novel miRNAs remains a very important aspect to the understanding of their biological roles. Computational methods can complement experimental approaches and can play an important role in identifying miRNAs candidates for further experimental validation. Most computational approaches utilize features extracted from miRNA precursors (pre-miRNA) sequences and/or their secondary structures to detect miRNAs. A key characteristic of pre-miRNAs is their hairpin structure. In this paper, Fuzzy decision trees are applied to the prediction and classification of real and pseudo pre-miRNAs. In our model, a number of features that encode local and global characteristics of pre-miRNA sequence structure are used. A fuzzy model of the extracted features was constructed. The fuzzified data was then fed into a fuzzy decision tree induction algorithm. Our experimental results showed that our method achieved better accuracy than other machine-learning based computational approaches. Analyzing the results revealed that one of the features –the sequence length to number of basepairs ratio - is very critical to the classification and identification of pre-miRNAs.

Keywords

miRNA microRNA pre-miRNA microRNA precursors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xue, C., Li, F., He, T., Liu, G., Li, Y., Zhang, X.: Classification of Real and Pseudo MicroRNA Precursors Using Local Structure_Sequence and Support Vector Machine. BMC Bioinformatics 6(1), 310 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sewer, A., Paul, N., Landfraf, P., Aravin, A., Pfeffer, S., Brownstein, M., Tuschl, T., van Nimwegan, E., Zavolan, M.: Identification of Clustered MicroRNAs Using an Ab Initio Prediction Method. BMC Bioinformatics 6(1), 267 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yoon, S., De Micheli, G.: Computational Identification of MicroRNAs and Their Tragets. In: Birth Defects Research, vol. 78, pp. 118–128 (2006)Google Scholar
  4. 4.
    Xu, J., Li, F., Sun, Q.: Identification of MicroRNA Precursors with Support Vector Machine and String Kernel. Genomics, Proteomics & Bioinformatics 6(2), 121–128 (2008)CrossRefGoogle Scholar
  5. 5.
    Jaing, P., Wu, H., Wang, W., Ma, W., Sun, X., Lu, M.: MiPred: Classification of Real and Pseudo MicroRNA Using Random Forest Prediction Model with Combined Features. Nucleic Acids Res. 35, W339–W344 (2007)CrossRefGoogle Scholar
  6. 6.
    Zheng, Y., Hsu, W., Li Lee, M., Soon Wong, L.: Exploring Essential Attributes For Detecting MicroRNA Precursors From Background Sequences. In: 32nd International Conference on Very Large Databases Workshop on Data Mining in Bioinformatics, Seoul, Korea (2006)Google Scholar
  7. 7.
    Wang, X., Zhang, J., Li, F., Gu, J., He, T., Zhang, X., Li, Y.: MicroRNA Identification Based on Sequence and Structure Alignment. Bioinformatics 21, 3610–3614 (2005)CrossRefPubMedGoogle Scholar
  8. 8.
    JonesRhoades, M., Bartel, D.: Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced MiRNA. Mol. Cell. 14(6), 787–799 (2004)CrossRefGoogle Scholar
  9. 9.
    Lai, E., Tomancak, P., Williams, R., Rubin, G.: Computational Identification of Drosophila MicroRNA Genes. Genome Biol. 4(7), R42 (2003)CrossRefGoogle Scholar
  10. 10.
    Ambros, V., Bartel, B., Bartel, D.: A Uniform System for MicroRNA Annotation. RNA 9(3), 277–279 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gordon, L., Chervonenkis, A., Gammerman, A., Shahmuradov, I., Solovyev, V.: Sequence Alignment Kernel for Recognition of Promoter Regions. Bioinformatics 19(15), 1964–1971 (2003)CrossRefPubMedGoogle Scholar
  12. 12.
    Bartel, D.: MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 116, 281–397 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    Ambion, MiRNA Research Guide, http://www.ambion.com/miRNA
  14. 14.
    Berezikov, E., Guryev, V., Van de Belt, J., Weinholds, E., Plasterk, R.H., Cuppen, E.: Phylogenetic Shadowing and Computational Identification of Human MicroRNA Genes. Cell 120, 21–24 (2005)CrossRefPubMedGoogle Scholar
  15. 15.
    Zheng, Y., Hsu, W., Li Lee, M., Limsoon, W.: Exploring Essential Attributes for Detecting MicroRNA Precursors from Background Sequences, http://www.comp.nus.edu.sg/~wongls/projects/miRNA/suppl-info/vldb2006.htm
  16. 16.
    Janikow, C.: Exemplar Learning in Fuzzy Decision Trees. In: 5th IEEE International Conference on Fuzzy Systems. New Orleans, vol. 2, pp. 1500–1505 (1996)Google Scholar
  17. 17.
    Lee, K., Lee, J., Lee-Kwang, H.: A Fuzzy Decision Tree Induction Method for Fuzzy Data. In: IEEE Conference on Fuzzy Systems, FUZZ-IEEE 1999, Seoul, vol. 1, pp. 16–25 (1999)Google Scholar
  18. 18.
    Umano, M., Okamoto, H., Hatono, I., Tamura, H., Kawachi, F., Umedzu, S., Kinoshita, J.: Fuzzy Decision Trees by Fuzzy ID3 Algorithm and Its Application to Diagnosis Systems. In: 3rd IEEE Conference on Fuzzy Systems, Orlando, vol. 3, pp. 2113–2118 (1994)Google Scholar
  19. 19.
    Yuan, Y., Shaw, M.: Induction of Fuzzy Decision Trees. Fuzzy Sets and Systems 69(2), 125–139 (1995)CrossRefGoogle Scholar
  20. 20.
    Abu-halaweh, N., Harrison, R.: Practical Fuzzy Decision Trees. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2009), Nashville (2009) (accepted) (to appear)Google Scholar
  21. 21.
    Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1, 81–106 (1986)Google Scholar
  22. 22.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  23. 23.
    Griffiths-Jones, S., Saini, H., Van Dongan, S.: miRBase: Tools for MicroRNA genomics. NAR 2008 36(Database Issue), D154–D158 (2008)Google Scholar
  24. 24.
    Griffiths-Jones, S., Grocock, R.J., Van Dongan, S., Bateman, A., Enright, A.: miRBase: microRNA Sequences, Targets and Gene Nomenclature. NAR 2006 34(Database Issue), 140–144 (2006)Google Scholar
  25. 25.
    Griffiths-Jones, S.: The MicroRNA Registry. NAR 2004 32(Database Issue), D109–D111 (2004)Google Scholar
  26. 26.
    Ambros, V., Bartel, B., Bartel, D.P., Carrington, J.C., Chen, X., Dreyfuss, G., Griffiths-Jones, S., Marshall, M., Ruvkun, G., Tuschl, T.: A Uniform System for MicroRNA Annotation. RNA 2003 9(3), 277–279 (2003)Google Scholar
  27. 27.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Na’el Abu-halaweh
    • 1
  • Robert Harrison
    • 1
  1. 1.Computer Science DepartmentGeorgia State UniversityAtlantaUSA

Personalised recommendations