Skip to main content

Endothelzellen

  • Chapter
Hämostaseologie
  • 4505 Accesses

Zusammenfassung

Endothelzellen sind entscheidend an der Regulation der Gerinnung sowie an der Aufrechterhaltung des Gleichgewichtes zwischen pro- und antithrombotischen Faktoren beteiligt. Im physiologischen Zustand stellt das Endothel eine nichtthrombogene Oberfläche dar, welche die Aktivierung der Plättchen und der Gerinnungskaskade verhindert und den Gefäßttonus reguliert. In diesen Prozessen spielen für die Hemmung bzw. Aktivierung der Thrombozyten sowohl die Balance zwischen Prostazyklin und seinem endogenen Gegenspieler Thromboxan A2 als auch die zwischen Stickstoffmonoxid (NO) und den biologisch hochaktiven Sauerstoffradikalen eine wichtige Rolle. In der Entwicklung der Atherosklerose gerät diese Balance bereits auf der ersten Stufe der endothelialen Dysfunktion aus dem Gleichgewicht, und atherogene und prokoagulatorische Faktoren gewinnen die Überhand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Luscher TF, Tanner FC, Tschudi MR et al. (1993) Endothelial dysfunction in coronary artery disease. Ann rev med 44: 395–418

    Article  CAS  PubMed  Google Scholar 

  2. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376

    Article  CAS  PubMed  Google Scholar 

  3. Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox activated forms. Science 258: 1898–1902

    Article  CAS  PubMed  Google Scholar 

  4. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664–666

    Article  CAS  PubMed  Google Scholar 

  5. Largiader T, Eto M, Payeli SK et al. (2008) Endothelial nitric oxide synthase gene transfer inhibits human smooth muscle cell migration via inhibition of Rho A. J Cardiovasc Pharmacol 52: 369–374

    Article  CAS  PubMed  Google Scholar 

  6. Tanner FC, Meier P, Greutert H et al. (2000) Nitric oxide modulates expression of cell cycle regulatory proteins: a cytostatic strategy for inhibition of human vascular smooth muscle cell proliferation. Circulation 101: 1982–1989

    CAS  PubMed  Google Scholar 

  7. Luscher TF, Barton M (1997) Biology of the endothelium. Clin Cardiol 20(II): 3–10

    Google Scholar 

  8. Oemar BS, Tschudi MR, Godoy N et al. (1998) Reduced endothelial nitric oxide synthase expression and production in human atherosclerosis. Circulation 97: 2494–2498

    CAS  PubMed  Google Scholar 

  9. Ghiadoni L, Taddei S, Virdis A et al. (1998) Endothelial function and common carotid artery wall thickening in patients with essential hypertension. Hypertension 32: 25–32

    CAS  PubMed  Google Scholar 

  10. Rubanyi GM, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivate endothelium derived relaxing factor. Am J Physiol 250: H822–H827

    CAS  PubMed  Google Scholar 

  11. Katusic ZS, Vanhoutte PM (1989) Superoxide anion is an endothelium derived contracting factor. Am J Physiol 257: H33–37

    CAS  PubMed  Google Scholar 

  12. Brunner H, Cockcroft JR, Deanfield J et al. (2005) Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens 23: 233–246

    Article  CAS  PubMed  Google Scholar 

  13. Whittaker N, Bunting S, Salmon J et al.(1976) The chemical structure of prostaglandin X (prostacyclin). Prostaglandins 12: 915–928

    Article  CAS  PubMed  Google Scholar 

  14. Cheng Y, Austin SC, Rocca B et al. (2002) Role of prostacyclin in the cardiovascular response to thromboxane A2. Science 296: 539–541

    Article  CAS  PubMed  Google Scholar 

  15. Steffel J, Luscher TF, Ruschitzka F et al. (2006) Cyclooxygenase-2 inhibition and coagulation. J Cardiovasc Pharmacol 47(Suppl 1): S15–S20

    Article  CAS  PubMed  Google Scholar 

  16. Jones DA, Carlton DP, McIntyre TM et al. (1993) Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J Biol Chem 268: 9049–9054

    CAS  PubMed  Google Scholar 

  17. Steffel J, Hermann M, Greutert H et al. (2005) Celecoxib decreases endothelial tissue factor expression through inhibition of c-Jun terminal NH2 kinase phosphorylation. Circulation 111: 1685–1689

    Article  CAS  PubMed  Google Scholar 

  18. Grosser T, Fries S, FitzGerald GA (2006) Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest 116: 4–15

    Article  CAS  PubMed  Google Scholar 

  19. Steffel J, Luscher TF, Tanner FC (2006) Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications. Circulation 113: 722–731

    Article  CAS  PubMed  Google Scholar 

  20. Mackman N (1997) Regulation of the tissue factor gene. Thromb Haemost 78: 747–754

    CAS  PubMed  Google Scholar 

  21. Steffel J, Latini RA, Akhmedov A et al. (2005) Rapamycin, but not FK-506, increases endothelial tissue factor expression: implications for drug-eluting stent design. Circulation 112: 2002–2011

    Article  CAS  PubMed  Google Scholar 

  22. Virmani R, Kolodgie FD, Burke AP et al. (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20: 1262–1275

    CAS  PubMed  Google Scholar 

  23. Steffel J, Lüscher TF (2008) Endothelium and Hemostasis in Health and Disease. In: Scharf RE, ed. Progress and Challenges in Transfusion Medicine, Hemostasis, and Hemotherapy. Karger, Freiburg i. Br., S 24–36

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steffel, J., Lüscher, T.F. (2010). Endothelzellen. In: Pötzsch, B., Madlener, K. (eds) Hämostaseologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01544-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01544-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01543-4

  • Online ISBN: 978-3-642-01544-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics