Skip to main content

Classification by the Use of Decomposition of Correlation Integral

  • Chapter
Foundations of Computational Intelligence Volume 5

Part of the book series: Studies in Computational Intelligence ((SCI,volume 205))

Summary

The correlation dimension is usually used to study features of fractals and data generating processes. For estimating the value of the correlation dimension in a particular case, a polynomial approximation of correlation integral is often used and then linear regression for logarithms of variables is applied. In this Chapter, we show that the correlation integral can be decomposed into functions each related to a particular point of data space. For these functions, one can use similar polynomial approximations such as the correlation integral. The essential difference is that the value of the exponent, which would correspond to the correlation dimension, differs in accordance to the position of the point in question. Moreover, we show that the multiplicative constant represents the probability density estimation at that point. This finding is used to construct a classifier. Tests with some data sets from the Machine Learning Repository show that this classifier can be very effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica 9D, 189–208 (1983)

    MathSciNet  Google Scholar 

  2. Osborne, A.R., Provenzale, A.: Finite correlation dimension for stochastic systems with power-law spectra. Physica D 35, 357–381 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Lev, N.: Hausdorff dimension. Student Seminar, Tel-Aviv University (2006), www.math.tau.ac.il/~levnir/files/hausdorff.pdf

  4. Weisstein, E.W.: Information Dimension. From MathWorld–A Wolfram Web Resource (2007), http://mathworld.wolfram.com/InformationDimension.html

  5. Merz, C.J., Murphy, P.M., Aha, D.W.: UCI Repository of Machine Learning Databases. Dept. of Information and Computer Science, Univ. of California, Irvine (1997), http://www.ics.uci.edu/~mlearn/MLSummary.html

  6. Camastra, P., Vinciarelli, A.: Intrinsic Dimension Estimation of Data: An Approach based on Grassberger-Procaccia’s Algorithm. Neural Processing Letters 14(1), 27–34 (2001)

    Article  MATH  Google Scholar 

  7. Takens, F.: On the Numerical Determination of the Dimension of the Attractor. In: Dynamical Systems and Bifurcations. Lecture Notes in Mathematics, vol. 1125, pp. 99–106. Springer, Berlin (1985)

    Chapter  Google Scholar 

  8. Camastra, F.: Data dimensionality estimation methods: a survey. Pattern Recognition 6, 2945–2954 (2003)

    Article  Google Scholar 

  9. Guerrero, A., Smith, L.A.: Towards coherent estimation of correlation dimension. Physics letters A 318, 373–379 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. John Wiley and Sons, Inc., New York (2000)

    Google Scholar 

  11. Dvorak, I., Klaschka, J.: Modification of the Grassberger-Procaccia algorithm for estimating the correlation exponent of chaotic systems with high embedding dimension. Physics Letters A 145(5), 225–231 (1990)

    Article  MathSciNet  Google Scholar 

  12. Wikipedia - Gauss–Markov theorem, http://en.wikipedia.org/wiki/Gauss–Markov_theorem

  13. Wikipedia – Linear regression, http://en.wikipedia.org/wiki/Linear_regression

  14. Leamer, E.E.: Specification searches. Ad hoc inference with non-experimental data. John Wiley and Sons, New York (1978)

    Google Scholar 

  15. Paredes, R., Vidal, E.: Learning Weighted Metrics to Minimize Nearest Neighbor Classification Error. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(7), 1100–1110 (2006)

    Article  Google Scholar 

  16. Merz, C.J., Murphy, P.M., Aha, D.W.: UCI Repository of Machine Learning Databases. Dept. of Information and Computer Science, Univ. of California, Irvine (1997), http://www.ics.uci.edu/~mlearn/MLrepository.html

  17. Paredes, R.: http://www.dsic.upv.es/~rparedes/research/CPW/index.html

  18. Friedmann, J.H.: Flexible Metric Nearest Neighbor Classification. Technical Report, Dept. of Statistics, Stanford University (1994)

    Google Scholar 

  19. Cover, T.M., Hart, P.E.: Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory IT-13(1), 21–27 (1967)

    Article  Google Scholar 

  20. Gama, J.: Iterative Bayes. Theoretical Computer Science 292, 417–430 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bellman, R.E.: Adaptive Control Processes. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  22. Pestov, V.: On the geometry of similarity search: Dimensionality course and concentration of measure. Information Processing Letters 73(1-2), 47–51 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jiřina, M., Jiřina, M. (2009). Classification by the Use of Decomposition of Correlation Integral. In: Abraham, A., Hassanien, AE., Snášel, V. (eds) Foundations of Computational Intelligence Volume 5. Studies in Computational Intelligence, vol 205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01536-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01536-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01535-9

  • Online ISBN: 978-3-642-01536-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics