Music Instrument Estimation in Polyphonic Sound Based on Short-Term Spectrum Match

Part of the Studies in Computational Intelligence book series (SCI, volume 202)


Recognition and separation of sounds played by various instruments is very useful in labeling audio files with semantic information. This is a non-trivial task requiring sound analysis, but the results can aid automatic indexing and browsing music data when searching for melodies played by user specified instruments. In this chapter, we describe all stages of this process, including sound parameterization, instrument identification, and also separation of layered sounds. Parameterization in our case represents power amplitude spectrum, but we also perform comparative experiments with parameterization based mainly on spectrum related sound attributes, including MFCC, parameters describing the shape of the power spectrum of the sound waveform, and also time domain related parameters. Various classification algorithms have been applied, including k-nearest neighbor (KNN) yielding good results. The experiments on polyphonic (polytimbral) recordings and results discussed in this chapter allow us to draw conclusions regarding the directions of further experiments on this subject, which can be of interest for any user of music audio data sets.


Power Spectrum Recognition Rate Music Instrument Short Time Fourier Transform Music Information Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agostini, G., Longari, M., Pollastri, E.: Content-Based Classification of Musical Instrument Timbres. In: International Workshop on Content-Based Multimedia Indexing (2001)Google Scholar
  2. 2.
    American National Standards Institute, American national standard: Psychoacoustical terminology. ANSI S3.20-1973 (1973)Google Scholar
  3. 3.
    Aniola, P., Lukasik, E.: JAVA Library for Automatic Musical Instruments Recognition. AES 122 Convention, Vienna, Austria (2007)Google Scholar
  4. 4.
    Brown, J.C.: Computer identification of musical instruments using pattern recognition with cepstral coefficients as features. J. Acoust. Soc. Am. 105, 1933–1941 (1999)CrossRefGoogle Scholar
  5. 5.
    Fitzgerald, R., Lindsay, A.: Tying semantic labels to computational descriptors of similar timbres. In: Sound and Music Computing 2004 (2004)Google Scholar
  6. 6.
    Fujinaga, I., McMillan, K.: Real Time Recognition of Orchestral Instruments. In: International Computer Music Conference (2000)Google Scholar
  7. 7.
    Herrera, P., Amatriain, X., Batlle, E., Serra, X.: Towards instrument segmentation for music content description: a critical review of instrument classification techniques. In: International Symposium on Music Information Retrieval ISMIR (2000)Google Scholar
  8. 8.
    ISO/IEC JTC1/SC29/WG11, MPEG-7 Overview (2004),
  9. 9.
    Kaminskyj, I.: Multi-feature Musical Instrument Sound Classifier w/user determined generalisation performance. In: Proceedings of the Australasian Computer Music Association Conference ACMC, pp. 53–62 (2002)Google Scholar
  10. 10.
    Kawahara, T., Lee, A., Kobayashi, T., Takeda, K., Minematsu, N., Sagayama, S., Itou, K., Ito, A., Yamamoto, M., Yamada, A., Utsuro, T., Shikano, K.: Free software toolkit for Japanese large vocabulary continuous speech recognition. In: Proc. Int’l Conf. on Spoken Language Processing (ICSLP), vol. 4, pp. 476–479 (2000)Google Scholar
  11. 11.
    Kitahara, T., Goto, M., Okuno, H.G.: Pitch-Dependent Identification of Musical Instrument Sounds. Applied Intelligence 23, 267–275 (2005)CrossRefGoogle Scholar
  12. 12.
    Logan, B.: Mel Frequency Cepstral Coefficients for Music Modeling. In: Proceedings of the First International Symposium on Music Information Retrieval ISMIR 2000 (2000)Google Scholar
  13. 13.
    Martin, K.D., Kim, Y.E.: Musical instrument identification: A pattern-recognition approach. In: 136-th meeting of the Acoustical Society of America, Norfolk, VA (1998)Google Scholar
  14. 14.
    Pollard, H.F., Jansson, E.V.: A Tristimulus Method for the Specification of Musical Timbre. Acustica 51, 162–171 (1982)Google Scholar
  15. 15.
    Ras, Z., Wieczorkowska, A., Lewis, R., Marasek, K., Zhang, C., Cohen, A., Kolczynska, E., Jiang, M.: Automatic Indexing of Audio With Timbre Information for Musical Instruments of Definite Pitch (2008),
  16. 16.
    Ras, Z., Zhang, X., Lewis, R.: MIRAI: Multi-hierarchical, FS-tree based Music Information Retrieval System (Invited Paper). In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 80–89. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Saha, G., Yadhunandan, U.: Modified Mel-Frequency Cepstral Coefficient. In: Proceedings of the IASTED 2004 (2004)Google Scholar
  18. 18.
    Sonic Foundry, Sound Forge. Software (2003)Google Scholar
  19. 19.
    Wieczorkowska, A.: Towards Musical Data Classification via Wavelet Analysis. In: Ohsuga, S., Raś, Z.W. (eds.) ISMIS 2000. LNCS (LNAI), vol. 1932, pp. 292–300. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Wieczorkowska, A., Ras, Z., Zhang, X., Lewis, R.: Multi-way Hierarchic Classification of Musical Instrument Sounds. In: Kim, S., Park, J., Pissinou, N., Kim, T., Fang, W., Slezak, D., Arabnia, H., Howard, D. (eds.) International Conference on Multimedia and Ubiquitous Engineering MUE 2007, Seoul, Korea. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  21. 21.
    Wold, E., Blum, T., Keislar, D., Wheaten, J.: Content-based classification, search, and retrieval of audio. IEEE Multimedia 3(3), 27–36 (1996)CrossRefGoogle Scholar
  22. 22.
    Zhang, X.: Cooperative Music Retrieval Based on Automatic Indexing of Music by Instruments and Their Types. PhD dissertation, The University of North Carolina at Charlotte, Charlotte (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of North CarolinaCharlotteUSA
  2. 2.Polish-Japanese Institute of Information TechnologyWarsawPoland

Personalised recommendations