Optical Signal Processing Techniques for Signal Regeneration and Digital Logic

  • Karin Ennser
  • Slavisa Aleksic
  • Franco Curti
  • D. M. Forin
  • Michael Galili
  • M. Karasek
  • L. K. Oxenløwe
  • Francesca Parmigiani
  • Periklis Petropoulos
  • Radan Slavík
  • Maria Spyropoulou
  • Stefano Taccheo
  • Antonio Luis Jesus Teixeira
  • Ioannis Tomkos
  • G. M. Tosi Beleffi
  • Cedric Ware
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5412)


This chapter presents recent developments in optical signal processing techniques and digital logic. The first section focuses on techniques to obtain key functionalities as signal regeneration and wavelength conversion exploiting nonlinear effects in high nonlinear fibres and semiconductor optical amplifiers. The second section covers techniques for clock recovery and retiming at high-speed transmission up to 320 Gb/s. In addition a technique to obtain OTDM demultiplexing based on cross-phase modulation is reported.


Semiconductor Optical Amplifier Wavelength Conversion Voltage Control Oscillator Timing Jitter Clock Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Winzer, P., et al.: 107-Gb/s optical ETDM transmitter for 100G Ethernet transport. In: Proc. of ECOC, paper Th4.1.1 (2005)Google Scholar
  2. 2.
    Galili, M., et al.: Low-penalty Raman-Assisted XPM Wavelength Conversion at 320 Gb/s. In: Proc. of CLEO US, paper CThF4 (2007)Google Scholar
  3. 3.
    Liu, Y., et al.: Error-Free 320 Gb/s SOA-Based Wavelength Conversion Using Optical Filtering. In: Proc. of OFC, paper PDP28 (2006)Google Scholar
  4. 4.
    Rau, L., et al.: All-optical 160-Gb/s phase reconstructing wavelength conversion using cross-phase modulation (XPM) in dispersion-shifted fibre. IEEE Photonics Technology Letters 16(11), 2520–2522 (2004)CrossRefGoogle Scholar
  5. 5.
    Bergano, N.S.: WDM long haul transmission networks. In: Proc. ECOC96, Oslo, pp. 65–71 (1996)Google Scholar
  6. 6.
    Agrawal, G.P.: Non Linear Fibre Optics, 4th edn. Academic Press, London (2006)Google Scholar
  7. 7.
    Ueno, Y., et al.: IEEE Photon. Tech. Lett. 13(5), 469–471 (2001)CrossRefGoogle Scholar
  8. 8.
    Murata, S., et al.: IEEE Photon. Tech. Lett. 3, 1021–1023 (1991)CrossRefGoogle Scholar
  9. 9.
    Olsson, B.-E., Blumenthal, D.J., et al.: IEEE Phot. Technol. Lett 12(7) (2000)Google Scholar
  10. 10.
    Mamyshev, P.V.: All-optical data regeneration based on self-phase modulation effect. In: Proc. Eur. Conf. Optical Communication (ECOC’98), Madrid, Spain, Sep. 20–24, 1998, pp. 475–476 (1998)Google Scholar
  11. 11.
    Taccheo, S., Vavassori, P.: paper ThU5. In: OFC 2002, Anaheim, CA, USA (2002)Google Scholar
  12. 12.
    Taccheo, S., Boivin, L.: paper ThA1. In: OFC 2000, Baltimore, USA (2000)Google Scholar
  13. 13.
    Forin, D.M., Curti, F., Tosi Beleffi, G.M., et al.: IEEE Phot. Tech. Lett. 17(2), 429–431 (2005)CrossRefGoogle Scholar
  14. 14.
    Patrick, D.M., Ellis, A.D.: IEE Elec. Lett. 29(15), 1391–1392 (1993)CrossRefGoogle Scholar
  15. 15.
    Nakazawa, M., Tamura, K., Kubota, H., Yoshida, E.: Opt. Fibre Tech. 4, 215–223 (1998)CrossRefGoogle Scholar
  16. 16.
    Nakazawa, M., Kubota, H., Tamura, K.: Opt. Lett. 24, 318–320 (1999)CrossRefGoogle Scholar
  17. 17.
    Schwartz, M., Bennet, W.R., Stein, S.: Communication Systems and Techniques. McGraw-Hill, New York (1966)Google Scholar
  18. 18.
    Forin, D.M., Curti, F., Tosi Beleffi, G.M., Matera, F.: All Optical Fibre 2+1 Auxiliary Carrier Transponder-Regenerator. Photonics Technology Letters 17(2), 429–431 (2005)CrossRefGoogle Scholar
  19. 19.
    Wong, H.C., Ren, G.B., Rorison, J.M.: The constraints on Quantum-dot semiconductor optical amplifiers for multichannel amplification. IEEE PTL, vol 18 (2006)Google Scholar
  20. 20.
    Sygletos, S., et al.: Multi-wavelength regenerative amplification based on quantum-dot semiconductor optical amplifiers. In: 9th Intern. Conf. on Transparent Optical Networks (ICTON’07), Rome, Italy, July 1–5, 2007, Paper We.D2.5 (invited), pp. 234-237 (2007)Google Scholar
  21. 21.
    Uskov, A.V., Berg, T.W., Mørk, J.: Theory of pulse-train amplification without patterning effects in Quantum-Dot Semiconductor Optical Amplifiers. IEEE Journal of Quantum Electronics 40(3), 306–320 (2004)CrossRefGoogle Scholar
  22. 22.
    Borri, P., et al.: Spectral Hole Burning and carrier heating dynamics in InGaAs Quantum-dot amplifiers. IEEE Journal of selected topics in Quantum electronics 6(3), 544–551 (2000)CrossRefGoogle Scholar
  23. 23.
    Akiyama, T., et al.: Application of spectral-hole burning in the inhomogeneously broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device. IEEE PTL 12(10), 1301–1303 (2000)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sugawara, M., et al.: Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb s-1 and a new scheme of 3R regenerators. Meas. Sci. Technol. 13, 1683–1691 (2002)CrossRefGoogle Scholar
  25. 25.
    Berg, T.W., et al.: Ultrafast gain recovery and modulation limitations in self-assembled Quantum-dot devices. IEEE PTL 13(6), 541–543 (2001)CrossRefGoogle Scholar
  26. 26.
    Gehring, E., et al.: Dynamic spatiotemporal speed control of ultrashort pulses in quantum-dot SOAs. IEEE journal of quantum electronics 42(10), 1047–1054 (2006)CrossRefGoogle Scholar
  27. 27.
    Spyropoulou, M., Sygletos, S., Tomkos, I.: Simulation of multi-wavelength regeneration based on QD semiconductor optical amplifiers. IEEE PTL 19(20), 1577–1579 (2007)CrossRefGoogle Scholar
  28. 28.
    Lee, H., et al.: Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGMand XPM using SOA’s. IEEE Journal of Quantum Electronics 35(8) (1999)Google Scholar
  29. 29.
    Spyropoulou, M., Sygletos, S., Tomkos, I.: Investigation of multiwavelength regeneration employing Quantum-dot semiconductor optical amplifiers beyond 40Gb/s. In: Proc. of the International Conference on Transparent Optical Networks (ICTON 2007), Rome, pp. 102–105 (2007)Google Scholar
  30. 30.
    Kagawa, M., et al.: ECOC, paper We3.2.4 (2005)Google Scholar
  31. 31.
    Clausen, A.T., et al.: CLEO, paper CThQ7 (2004)Google Scholar
  32. 32.
    Boerner, C., et al.: OFC, paper OTuO3 (2003)Google Scholar
  33. 33.
    Lach, E., et al.: OFC, paper TuA2 (2002)Google Scholar
  34. 34.
    Kamatani, O., Kawanishi, S.: Prescaled Timing Extraction From 400 Gbit/s Optical Signal Using an Phase Lock Loop Based on Four-Wave-Mixing in a Laser Diode Amplifier. IEEE Photonics Technology Letters 8(8), 1094–1096 (1996)CrossRefGoogle Scholar
  35. 35.
    Marembert, V., et al.: ECOC, paper Th4.4.1 (2004)Google Scholar
  36. 36.
    Oxenløwe, L.K., et al.: ECOC, paper We3.5.2 (2004)Google Scholar
  37. 37.
    Nielsen, M.L., et al.: Electron. Lett. 39(18), 1334–1335 (2003)CrossRefGoogle Scholar
  38. 38.
    Zibar, D., et al.: CLEO, paper CMZ4 (2005)Google Scholar
  39. 39.
    Ware, C., Oxenløwe, L.K., Agis, F.G., Mulvad, H.C.H., Galili, M., Kurimura, S., Nakajima, H., Ichikawa, J., Erasme, D., Clausen, A.T., Jeppesen, P.: 320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop. Submitted to Optics Express (November 2007)Google Scholar
  40. 40.
    Oxenløwe, L.K., Gomez Agis, F., Ware, C., Kurimura, S., Mulvad, H.C.H., Galili, M., Kitamura, K., Nakajima, H., Ichikawa, J., Erasme, D., Clausen, A.T., Jeppesen, P.: 640 Gbit/s clock recovery using periodically poled Lithium Niobate. Submitted to Electronics Letters (December 2007)Google Scholar
  41. 41.
    Sartorius, B., Bornholdt, C., Brox, O., Ehrke, H.J., Hoffman, D., Ludwig, R., Möhrle, M.: All-Optical Clock Recovery Module Based on Self-Pulsating DFB Laser. IEE Electronics Letters 34(17), 1664–1665 (1998)CrossRefGoogle Scholar
  42. 42.
    Jinno, M., Matsumoto, T.: Optical Tank Circuits Used for All-Optical Timing Recovery. IEEE Journal of Quantum Electronics 28(4), 895–900 (1992)CrossRefGoogle Scholar
  43. 43.
    Barnsley, P.: All-Optical Clock Extraction Using Two-Contact Devices. IEE Proceedings – Photonics Journal 140(5), 325–336 (1993)Google Scholar
  44. 44.
    Yamamoto, T., Oxenløwe, L.K., Schmidt, C., Schubert, C., Hilliger, E., Feiste, U., Berger, J., Ludwig, R., Weber, H.G.: Clock Recovery from 160 Gbit/s Data Signals Using Phase-Locked Loop with Interferometric Optical Switch Based on Semiconductor Optical Amplifier. IEE Electronics Letters 37(8), 509–510 (2001)CrossRefGoogle Scholar
  45. 45.
    Vlachos, K., Theophilopoulos, G., Hatziefremidis, A., Avramopoulos, H.: 30 Gb/s all-optical clock recovery circuit. IEEE Photon. Techonol. Lett. 12, 705–707 (2000)CrossRefGoogle Scholar
  46. 46.
    Carruthers, T.F., Lou, J.W.: 80 to 10 Gbit/s Clock Recovery Using Phase Detection with Mach-Zehnder Modulator. IEE Electronics Letters 37(14), 906–907 (2001)CrossRefGoogle Scholar
  47. 47.
    Wang, T., Li, Z., Lou, C., Wu, Y., Gao, Y.: Comb-Like Pre-processing to Reduce the Pattern Effect in the Clock Recovery Based on SOA. IEEE Photonics Technology Letters 14(6), 855–857 (2002)CrossRefGoogle Scholar
  48. 48.
    Aleksic, S., Ribnicsek, G.: Fast Clock Recovery Methods for Application in All-Optical Networks. In: Conference on Optical Network Design and Modeling (ONDM 2006), Copenhagen, May 2006, pp. 1–5 (2006)Google Scholar
  49. 49.
    Silveira, T.G., Teixeira, A., Tosi Beleffi, G., Forin, D., Monteiro, P., Furukawa, H., Wada, N.: All-Optical Conversion From RZ to NRZ Using Gain-Clamped SOA. IEEE Photon. Tech. Lett. 19(6) (2007)Google Scholar
  50. 50.
    Ono, S., Okabe, R., Futami, F., Watanabe, S.: Novel demultiplexer for ultra high speed pulses using a perfect phase-matched parametric amplifier. In: OFC 2006 (March 2006)Google Scholar
  51. 51.
    Song, X., Yu, F.C., Song, H., Sugiyama, M., Nakano, Y.: All-Optical OTDM DEMUX with Monolithic SOA-MZI Switch by Regrowth-Free Selective Area MOVPE. In: Lasers and Electro-Optics, CLEO/Pacific 2005 (Aug. 2005)Google Scholar
  52. 52.
    Olsson, B.-E., Blumenthal, D.J., et al.: A Simple and Robust 40-Gb/s Wavelength Converter Using Fibre Cross-Phase Modulation and Optical Filtering. IEEE Phot. Technol. Lett. 12(7) (2000)Google Scholar
  53. 53.
    Watanabe, S., et al.: 160 Gb/s Optical 3R-Regenerator in Fibre Transmission experiment. In: Proc. of OFC, PD16-1 (2003)Google Scholar
  54. 54.
    Petropoulos, P., et al.: Rectangular pulse generation based on pulse reshaping using a superstructured fibre Bragg grating. J. Lightwave Technol. 19, 746–752 (2001)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Parmigiani, F., et al.: All-optical pulse reshaping and retiming systems incorporating a pulse shaping fibre Bragg grating. J. Lightwave Technol. 24(1), 357–364 (2006)CrossRefGoogle Scholar
  56. 56.
    Oxenløwe, L.K., et al.: ECOC, paper We2.3.4 (2006)Google Scholar
  57. 57.
    Park, Y., et al.: Opt. Express 14(26), 12671 (2006)CrossRefGoogle Scholar
  58. 58.
    Oxenløwe, L.K., et al.: CLEO-Europe’07, paper CI8-1 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Karin Ennser
    • 1
  • Slavisa Aleksic
    • 2
  • Franco Curti
    • 3
  • D. M. Forin
    • 3
  • Michael Galili
    • 4
  • M. Karasek
    • 5
  • L. K. Oxenløwe
    • 4
  • Francesca Parmigiani
    • 6
  • Periklis Petropoulos
    • 6
  • Radan Slavík
    • 5
  • Maria Spyropoulou
    • 7
  • Stefano Taccheo
    • 8
  • Antonio Luis Jesus Teixeira
    • 9
  • Ioannis Tomkos
    • 7
  • G. M. Tosi Beleffi
    • 3
  • Cedric Ware
    • 10
  1. 1.Institute of Advanced TelecommunicationsSwansea UniversityUK
  2. 2.Institute of Broadband CommunicationsVienna University of TechnologyViennaAustria
  3. 3.ISCOM - Italian Ministry of Economic Development Sector CommunicationRomeItaly
  4. 4.DTU FotonikTechnical University of DenmarkKgs. LyngbyDenmark
  5. 5.Institute of Photonics and Electronics, Academy of Sciences of the Czech RepublicPragueCzech Republic
  6. 6.Optoelectronics Research CentreUniversity of SouthamptonSouthamptonUK
  7. 7.Athens Information TechnologyPeania-Attica, AthensGreece
  8. 8.Politecnico di MilanoMilanItaly
  9. 9.Instituto de Telecomunicações (IT)Universidade de AveiroAveiroPortugal
  10. 10.Institut TELECOM, TELECOM Paris Tech (formerly ENST)France

Personalised recommendations