Advertisement

Novel Transponder Interfaces: Novel Modulation Formats

  • Werner Rosenkranz
  • Slavisa Aleksic
  • Torger Tokle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5412)

Abstract

For a long period of time, the modulation format in optical communications technology was based on intensity modulation with an on/off - keying signalling, using NRZ and sometimes RZ pulse-shapes. However with today’s requirements for very high capacity networks with constraints on cost efficiency, more advanced solutions are required. Advanced modulation formats are considered as one of the key issue in the networks of the future.

With novel modulation formats we have the general options to modulate the amplitude or the phase or both of the optical carrier signal of a coherent laser. An additional degree of flexibility can be achieved by using polarization (division) multiplexing (PDM). The table gives an overview of the currently discussed options.

Keywords

Amplify Spontaneous Emis Optical Packet Power Penalty IEEE Photonic Technology Letter Fibre Delay Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jensen, J.B., Tokle, T., Geng, Y., Jeppesen, P., Serbay, M., Rosenkranz, W.: Dispersion Tolerance of 40 Gbaud Multilevel Modulation Formats with up to 3 bits per Symbol. In: Leos Annual 2006, Montreal, QC, Canada, 29 Oct.–2 Nov. 2006, paper WH 4 (2006)Google Scholar
  2. 2.
    Tokle, T., Serbay, M., Jensen, J.B., Geng, Y., Rosenkranz, W., Jeppesen, P.: Investigation of multilevel phase and amplitude modulation formats in combination with polarisation multiplexing up to 240 Gbit/s. IEEE Photonics Technology Letters 18(20), 2090–2092 (2006)CrossRefGoogle Scholar
  3. 3.
    Tokle, T., Serbay, M., Rosenkranz, W., Jeppesen, P.: 32.1 Gbit/s InverseRZ-ASK-DQPSK Modulation with Low Implementation penalty. In: Leos Annual 2006, Montreal, QC, Canada, 29 Oct.–2 Nov. 2006, paper WH 2 (2006)Google Scholar
  4. 4.
    Serbay, M., Tokle, T., Jeppsen, P., Rosenkranz, W.: 42.8 Gbit/s, 4 Bits per Symbol 16-ary Inverse-RZ-QASK-DQPSK Transmission Experiment without Polmux. In: Optical Fibre Conference, OFC 2007, Anaheim, USA, 25-29 March, OThL2 (2007)Google Scholar
  5. 5.
    Tokle, T., Serbay, M., Geng, Y., Jensen, J.B., Rosenkranz, W., Jeppesen, P.: Penalty-free Transmission of Multilevel 240 Gbit/s RZ-DQPSK-ASK using only 40 Gbit/s Equipment. In: ECOC 2005, Glasgow, Scotland, Sep. 2005, post deadline paper Th4.1.6 (2005)Google Scholar
  6. 6.
    Xia, C., Rosenkranz, W.: Statistical Analysis of Electrical Equalization of Differential Mode Delay in MMF Links for 10-Gigabit Ethernet. In: OFC 2005, Anaheim, USA (2005)Google Scholar
  7. 7.
    Xia, C., Rosenkranz, W.: Electrical Equalization for Duobinary and Phase Shift Keyed Modulation Formats (oral presentation). In: Workshop on Design of Next Generation Optical Networks: from the Physical up to the Network Level Perspective, Ghent, Belgium, 6 Feb. (2006)Google Scholar
  8. 8.
    Toda, H., Nakada, F., Suzuki, M., Hasegawa, A.: An Optical Packet Compressor Using a Fibre Loop for a feasible all optical TDM Network. In: 25th European Conference on Optical Communication (ECOC 1999), Nice, France, 26-30 September 1999, vol. 2(I), pp. 256–257 (1999)Google Scholar
  9. 9.
    Patel, N.S., Hall, K.L., Rauschenbach, K.A.: Optical Rate Conversion for High-Speed TDM Networks. IEEE Photonics Technology Letters 9(9), 1277–1279 (1997)CrossRefGoogle Scholar
  10. 10.
    Toliver, P., Deng, K.L., Glesk, I., Prucnal, P.R.: Simultaneous Optical Compression and Decompression of 100 Gb/s OTDM Packets Using a Single Bidirectional Optical Delay Line Lattice. IEEE Photonics Technology Letters 11(9), 1183–1185 (1999)CrossRefGoogle Scholar
  11. 11.
    Aleksic, S., Krajinovic, V., Bengi, K.: A Novel Scalable Optical Packet Compression/ Decompression Scheme. In: 27th European Conference on Optical Communication (ECOC 2001), Amsterdam, Netherlands, 30 September - 04 October 2001, vol. 3(1), pp. 478–479 (2001)Google Scholar
  12. 12.
    Acampora, A.S., Shah, S.I.A.: A packetcompression/decompression approach for very high speed optical networks. In: Proceedings of SBT/IEEE ITS, Rio de Janeiro, Brasil, September 1990, pp. 38–48 (1990)Google Scholar
  13. 13.
    Aleksic, S.: Packet-Switched OTDM Networks Employing the Packet Compression/Expansion Technique. Photonic Network Communications 5(3), 273–288 (2003)CrossRefGoogle Scholar
  14. 14.
    Aleksic, S.: Design Considerations for a High-Speed Metro Network using All-Optical Packet Processing. In: 8th International Conference on Transparent Optical Networks (ICTON2006), Nottingham, United Kingdom (invited), June 2006, pp. 82–86 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Werner Rosenkranz
    • 1
  • Slavisa Aleksic
    • 2
  • Torger Tokle
    • 3
  1. 1.University of KielKielGermany
  2. 2.Institute of Broadband CommunicationsVienna University of TechnologyViennaAustria
  3. 3.Research Center COMTechnical University of DenmarkLyngbyDenmark

Personalised recommendations