Software Tools and Methods for Research and Education in Optical Networks

  • Sébastien Rumley
  • Christian Gaumier
  • Ramon Aparicio-Pardo
  • Ching-Hung Chang
  • Walter Colitti
  • Belen Garcia-Manrubia
  • Pandelis Kourtessis
  • Juan Antonio Martínez-León
  • Ann Nowé
  • Pablo Pavón-Mariño
  • J. Scharf
  • K. Steenhaut
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5412)

Abstract

Recent advances in photonic communication networks require planning, modelling and simulation tools of ever increasing scope and complexity. Based on valid and credible models, simulators are used heavily to investigate and assess new solutions before implementing testbeds and field trials. On the other hand, tools relying on heuristics algorithms or analytical models are widely used for network planning and dimensioning. This chapter reviews some recent trends in conception and utilisation of tools for modelling and planning, and reports several developments performed with commercial or academic tools and frameworks within the COST action 291.

Keywords

Optical Network Packet Loss Rate Optical Network Unit Node Model Virtual Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, 3rd edn. McGraw-Hill, New York (2000)MATHGoogle Scholar
  2. 2.
    Phillips, C.: A Review of High Performance Simulation Tools and Modeling Concepts. In: Recent Advances in Modeling and Simulation Tools for Communication Networks and Services, pp. 29–48. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Lackovic, M., Bungarzeanu, C.: A Component Approach to Optical Transmission Network Design. In: Modelling and Simulation Tools for Emerging Telecommunications Networks, pp. 335–355. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Ince, A.N.: European Concerted Research Action COST 285 Modeling and Simulation Tools for Research in Emerging Multiservice Telecommunications. In: Modelling and Simulation Tools for Emerging Telecommunications Networks, pp. 1–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Schantz, R.E., Schmidt, D.C.: Middleware for Distributed Systems. Evolving the Common Structure for Network-centric Applications. In: Encyclopedia of Software Engineering, Wiley, Chichester (2001)Google Scholar
  6. 6.
    Rumley, S., Gaumier, C.: Multilayer Description of Large Scale Communication Networks. In: Recent Advances in Modeling and Simulation Tools for Communication Networks and Services, pp. 121–135. Springer, Heidelberg (2008)Google Scholar
  7. 7.
    Savić, D., Pustisek, M., Potorti, F.: A tool for packaging and exchanging simulation results. In: First International Conference on Performance Evaluation Methodologies and Tools Valuetools (October 2006)Google Scholar
  8. 8.
    Rumley, S., Gaumier, C.: Routing and Wavelength Assignment via Web-Services. In: Proc. of the conference on Optical Network Design and Modelling (March 2008)Google Scholar
  9. 9.
    Fowler, M., Foemmel, M.: Continuous integration, http://www.martinfowler.com/articles/continuousIntegration.html
  10. 10.
    Hung, C., Kourtessis, P., Senior, J.M.: GPON Service Level Agreement based Dynamic Bandwidth Assignment Protocol. IET Electronic Letters 42(20), 1173–1174 (2006)CrossRefGoogle Scholar
  11. 11.
    Shachaf, Y., Chang, C.-H., Kourtessis, P., Senior, J.M.: Multi-PON access network using a coarse AWG for smooth migration from TDM to WDM PON. Journal of OPTICS EXPRESS 15, 7840–7844 (2007)CrossRefGoogle Scholar
  12. 12.
    Hung, C., Kourtessis, P., Senior, J.M.: Dynamic Bandwidth assignment for Multi-service access in long-reach GPON. In: 33rd European Conference and Exhibition on Optical Communication (ECOC2007), Berlin, paper 8.4.3, pp. 277–278 (2007)Google Scholar
  13. 13.
    Shachaf, Y., Kourtessis, P., Senior, J.M.: A Full-duplex Access Network based on CWDM-routed PONs. In: Optical Fiber communication/National Fiber Optic Engineers Conference, OFC/NFOEC (2008)Google Scholar
  14. 14.
    ITU-T Rec. G.8080/Y130411: Architecture for the Automatic Switched Optical Networks (ASON) (2001)Google Scholar
  15. 15.
    Mannie, E. (ed.): Generalized multi-protocol label switching architecture, draft-ietf-ccamp-gmpls-architecture-07.txt (2003)Google Scholar
  16. 16.
    Colitti, W., Gurzì, P., Steenhaut, K.: Ann Nowé, Adaptive Multilayer Routing in the Next Generation GMPLS Internet. In: Proc. of Second Workshop on Intelligent Networks: Adaptation, Communication and Reconfiguration (2008)Google Scholar
  17. 17.
    Varga, A.: OMNeT++ User Manual, http://www.omnetpp.org/doc/manual/usman.html
  18. 18.
    INET Framework for OMNeT++/OMNEST – release 2006-10-12 – http://www.omnetpp.org/doc/INET/neddoc/index.html
  19. 19.
    Pavon-Mariño, P., Aparicio-Pardo, R., Moreno-Muñoz, G., Garcia-Haro, J., Veiga-Gontan, J.: MatPlanWDM: An educational tool for network planning in wavelength-routing networks. In: Tomkos, I., Neri, F., Solé Pareta, J., Masip Bruin, X., Sánchez Lopez, S. (eds.) ONDM 2007. LNCS, vol. 4534, pp. 58–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    MATLAB Central: http://www.matlabcentral.com, (last access: 9th April, 2008)
  21. 21.
    http://tomopt.com/tomlab/ (last access: 9th April 2008)
  22. 22.
    Pavon-Mariño, P., Garcia-Manrubia, B., Aparicio-Pardo, R., Garcia-Haro, J., Moreno-Muñoz, G.: MatPlanWDM: An educational RWA network planning tool for dynamic flows. In: Proc. 7th Workshop in G/MPLS networks, co-located with 12th International ICST Conference on Optical Network Design and Modelling, Vilanova i la Geltrú, Spain (2008)Google Scholar
  23. 23.
    Pavon-Mariño, P., Aparicio-Pardo, R., Garcia-Manrubia, B., Garcia-Haro, J.: WDM networks planning under multi-hour traffic demand with the MatPlanWDM tool. In: Proc. Industry Track “Simulation Works” co-located with SIMUTools 2008, Marseille, France (2008)Google Scholar
  24. 24.
    Stordahl, K., Murphy, E.: Forecasting Long-Term Demand for Services in the Residential MarketGoogle Scholar
  25. 25.
    http://www.telenor.no/fou/prosjekter/optimum/ (last access: 9th April 2008)
  26. 26.
  27. 27.
    Maes, P.: Concepts and experiments in computational reflection. SIGPLAN Not. 22(12), 147–155 (1987)CrossRefGoogle Scholar
  28. 28.
    Lackovic, M., Bungarzeanu, C., et al.: Advanced Infrastructure for Photonic Networks – Tools. Extended Final Report of the COST Action 266, pp. 192–198 (2003)Google Scholar
  29. 29.
    Lackovic, M., Inkret, R.: Network Design, Optimization and Simulation Tool Cosmos. In: Proceedings of the 2nd International Workshop on All-Optical Networks, Zagreb, Croatia (2001)Google Scholar
  30. 30.
    Kubinidze, N., Ganchev, I., O’Droma, M.: Network Simulator NS2: Shortcomings, Potential Development and Enhancement Strategies. In: Modelling and Simulation Tools for Emerging Telecommunications Networks, pp. 263–277. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Rumley, S.: Application of Multi-Agent Techniques to the Optimal Configuration of Electric Distribution Systems Including Dispersed Generation (2005), http://www2.ing.puc.cl/power/paperspdf/rumley.pdf
  32. 32.
    Rumley, S.: Short-term Scientific Mission Report, http://www.ait.gr/cost291/STSM_reports_pdfs/20.pdf
  33. 33.
  34. 34.
  35. 35.
    Pedrola, O., Rumley, S., Klinkowski, M., Gaumier, C., Sole-Pareta, J.: Flexible Simulators for novel OBS experiments. In: Proceedings of the 10th ICTON conference (2008)Google Scholar
  36. 36.
  37. 37.
    Kocher, H.: Entwurf und Implementierung einer Simulationsbibliothek unter Anwendungobjektorientierter Methoden. Dissertation, University of Stuttgart (1994)Google Scholar
  38. 38.
    Bodamer, S., Dolzer, K., Gauger, C., Barisch, M.: IKR Simulation Library 2.6 User Guide. IKR, University of Stuttgart (2006)Google Scholar
  39. 39.
    Bodamer, S., Dolzer, K., Gauger, C., Necker, M.: Object-Oriented Simulation – The IKR Simulation Library. IKR, University of Stuttgart (2005)Google Scholar
  40. 40.
    Bodamer, S., Dolzer, K., Gauger, C., Kutter, M., Steinert, T., Barisch, M.: IKR Component Library 2.6 User Guide. IKR, University of Stuttgart (2006)Google Scholar
  41. 41.
    Bodamer, S., Dolzer, K., Gauger, C., Kutter, M., Steinert, T., Barisch, M.: IKR Utility Library 2.6 User Guide. IKR, University of Stuttgart (2006)Google Scholar
  42. 42.
    Bodamer, S., Lorang, M., Barisch, M.: IKR TCP Library 1.2 User Guide. IKR, University of Stuttgart (2004)Google Scholar
  43. 43.
    Necker, M., Reiser, U.: IKR Emulation Library 1.0 User Guide. IKR, University of Stuttgart (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sébastien Rumley
    • 1
  • Christian Gaumier
    • 1
  • Ramon Aparicio-Pardo
    • 2
  • Ching-Hung Chang
    • 3
  • Walter Colitti
    • 4
  • Belen Garcia-Manrubia
    • 2
  • Pandelis Kourtessis
    • 3
  • Juan Antonio Martínez-León
    • 2
  • Ann Nowé
    • 4
  • Pablo Pavón-Mariño
    • 2
  • J. Scharf
    • 5
  • K. Steenhaut
    • 5
  1. 1.Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Universidad Politecnica de CartagenaCartagenaSpain
  3. 3.Science & Technology Research Institute (STRI)University of HertfordshireHertsUK
  4. 4.Vrije Universiteit BrusselElseneBelgium
  5. 5.Institute of Communication Networks and Computer Engineering (IKR)StuttgartGermany

Personalised recommendations